Advertisements
Advertisements
Question
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 - i}{1 + i}\]
Solution
\[\frac{1 - i}{1 + i}\]
\[\text { Rationalising the denominator }: \]
\[\frac{1 - i}{1 + i} \times \frac{1 - i}{1 - i}\]
\[ \Rightarrow \frac{1 + i^2 - 2i}{1 - i^2} \]
\[ \Rightarrow \frac{- 2 i}{2} \left( \because i^2 = - 1 \right)\]
\[ \Rightarrow - i\]
\[r = \left| z \right|\]
\[ = \sqrt{0 + 1}\]
\[ = 1\]
\[\text { Since point } (0, - 1) \text { lies on the negative direction of the imaginary axis, the argument of z is given by } \frac{3\pi}{2} . \]
\[\text { Polar form } = r\left( \cos \theta + i\sin \theta \right)\]
\[ = \left( cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2} \right)\]
\[ = \left\{ cos\left( 2\pi - \frac{\pi}{2} \right) + i\sin\left( 2\pi - \frac{\pi}{2} \right) \right\}\]
\[ = \left( \cos\frac{\pi}{2} - i\sin\frac{\pi}{2} \right)\]
APPEARS IN
RELATED QUESTIONS
Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.
Find the modulus of `(1+i)/(1-i) - (1-i)/(1+i)`
If (x + iy)3 = u + iv, then show that `u/x + v/y =4(x^2 - y^2)`
Find the conjugate of the following complex number:
4 − 5 i
Find the conjugate of the following complex number:
\[\frac{1}{1 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - i )^2}{2 + i}\]
Find the conjugate of the following complex number:
\[\frac{(1 + i)(2 + i)}{3 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]
Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\sqrt{3} + i\]
Find the modulus and argument of the following complex number and hence express in the polar form:
1 − i
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1}{1 + i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 + 2i}{1 - 3i}\]
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].
Write the conjugate of \[\frac{2 - i}{\left( 1 - 2i \right)^2}\] .
If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]
Solve the equation `z^2 = barz`, where z = x + iy.
If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.
The conjugate of the complex number `(1 - i)/(1 + i)` is ______.
If z1 = `sqrt(3) + i sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.
Solve the system of equations Re(z2) = 0, z = 2.
State True or False for the following:
If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.
sinx + icos2x and cosx – isin2x are conjugate to each other for ______.
If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______.