English

If (x + iy)3 = u + iv, then show that ux+vy =4(x2-y2) - Mathematics

Advertisements
Advertisements

Question

If (x + iy)3 = u + iv, then show that `u/x + v/y  =4(x^2 - y^2)`

Sum

Solution

`(x  + iy)^3  = u + iv`

or `u  +  iv  = x^3  + 3x^2 .iy  + 3.(iy)^2  x  + (iy)^3`

= `x^3  + 3x^2  yi  + 3xy^2 i^2  + i^3 y^3`   `[∵ i^2 = - 1]`

= `(x^3  - 3xy^2 ) + (3x^2y  -  y^3)i`

⇒ `x^3 - 3xy^2 = u/x`

and `3x^2y  - y^3  = v`

or `3x^2  - y^2 = v/y`

On adding equations, (1) and (2)

`4x^2  - 4y^2  = u/x  +  v/y`

⇒  `u/x + v/y  = 4 (x^2  - y^2)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Miscellaneous Exercise [Page 113]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Miscellaneous Exercise | Q 16 | Page 113

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.


Find the modulus  of  `(1+i)/(1-i) - (1-i)/(1+i)`


Find the conjugate of the following complex number:

\[\frac{1}{3 + 5i}\]


Find the conjugate of the following complex number:

\[\frac{1}{1 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - i )^2}{2 + i}\]


Find the conjugate of the following complex number:

\[\frac{(1 + i)(2 + i)}{3 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

1 + i


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\sqrt{3} + i\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 - i}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1}{1 + i}\]


Write the conjugate of \[\frac{2 - i}{\left( 1 - 2i \right)^2}\] .


If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=


If \[\frac{( a^2 + 1 )^2}{2a - i} = x + iy, \text { then } x^2 + y^2\] is equal to


If \[x + iy = (1 + i)(1 + 2i)(1 + 3i)\],then x2 + y2 =


If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]


If |z2 – 1| = |z|2 + 1, then show that z lies on imaginary axis.


The conjugate of the complex number `(1 - i)/(1 + i)` is ______.


If a complex number lies in the third quadrant, then its conjugate lies in the ______.


If z1 = `sqrt(3) + i  sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.


What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?


Solve the system of equations Re(z2) = 0, z = 2.


State True or False for the following:

If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.


What is the conjugate of `(2 - i)/(1 - 2i)^2`?


sinx + icos2x and cosx – isin2x are conjugate to each other for ______.


If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×