English

Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i. - Mathematics

Advertisements
Advertisements

Question

Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.

Sum

Solution

- 6 - 24i = - 6 + 24i   ......(1)

(x – iy) (3 + 5i) = (3x – 5yi<sup.2 + 5xi – 3yi)

= 3x + 5y + (5x – 3y)i  ......(2)

From equations (1) and (2),

3x + 5y + (5x – 3y)i = – 6 + 24i

writing real and complex numbers the same

3x + 5y = – 6  ......(3)
5x – 3y = 24   ......(4)

Equation (3) can be reduced to 3 and Equation Multiplying (4) by 5

9x + 15y = – 18   .....(5)
25x – 15y = 120   .....(6)

By adding equation (5) and equation (6),

34x = 102 या x = `102/34  = 3`

Putting the value of x in equation (3),

9+ 5y = – 6 or 5y = – 15, या y = – 3

Hence x = 3, y = – 3.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Miscellaneous Exercise [Page 113]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Miscellaneous Exercise | Q 14 | Page 113

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`

 

Find the modulus  of  `(1+i)/(1-i) - (1-i)/(1+i)`


If (x + iy)3 = u + iv, then show that `u/x + v/y  =4(x^2 - y^2)`


Find the conjugate of the following complex number:

4 − 5 i


Find the conjugate of the following complex number:

\[\frac{1}{1 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - i )^2}{2 + i}\]


Find the conjugate of the following complex number:

\[\frac{(1 + i)(2 + i)}{3 + i}\]


Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 - i}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 + 2i}{1 - 3i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

 \[\frac{- 16}{1 + i\sqrt{3}}\]


If z1z2 and z3z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].


Write the conjugate of \[\frac{2 - i}{\left( 1 - 2i \right)^2}\] .


If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.


If \[\frac{( a^2 + 1 )^2}{2a - i} = x + iy, \text { then } x^2 + y^2\] is equal to


If \[x + iy = (1 + i)(1 + 2i)(1 + 3i)\],then x2 + y2 =


If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]


If |z2 – 1| = |z|2 + 1, then show that z lies on imaginary axis.


If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.


The conjugate of the complex number `(1 - i)/(1 + i)` is ______.


If z1 = `sqrt(3) + i  sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.


What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?


If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.


Solve the system of equations Re(z2) = 0, z = 2.


If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?


sinx + icos2x and cosx – isin2x are conjugate to each other for ______.


If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×