English

If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|. - Mathematics

Advertisements
Advertisements

Question

If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.

Sum

Solution

Distance of the point representing z from the centre of the circle is |z – (–4 + i0)| = |z + 4|.

According to given condition |z + 4| ≤ 3.

Now |z + 1| = |z + 4 – 3| ≤ |z + 4| + |–3| ≤ 3 + 3 = 6

Therefore, greatest value of |z + 1| is 6.

Since least value of the modulus of a complex number is zero, the least value of |z + 1| = 0.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Solved Examples [Page 81]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Solved Examples | Q 9 | Page 81

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`

 

Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.


Find the modulus  of  `(1+i)/(1-i) - (1-i)/(1+i)`


Find the conjugate of the following complex number:

4 − 5 i


Find the conjugate of the following complex number:

\[\frac{1}{3 + 5i}\]


Find the conjugate of the following complex number:

\[\frac{1}{1 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - i )^2}{2 + i}\]


Find the conjugate of the following complex number:

\[\frac{(1 + i)(2 + i)}{3 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

1 + i


Find the modulus and argument of the following complex number and hence express in the polar form:

1 − i


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 - i}{1 + i}\]


If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.


If \[\frac{( a^2 + 1 )^2}{2a - i} = x + iy, \text { then } x^2 + y^2\] is equal to


If \[x + iy = (1 + i)(1 + 2i)(1 + 3i)\],then x2 + y2 =


If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]


Solve the equation `z^2 = barz`, where z = x + iy.


The conjugate of the complex number `(1 - i)/(1 + i)` is ______.


If a complex number lies in the third quadrant, then its conjugate lies in the ______.


If z1 = `sqrt(3) + i  sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.


What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?


If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.


If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?


sinx + icos2x and cosx – isin2x are conjugate to each other for ______.


If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×