English

If (1+I)(1 + 2i)(1+3i)..... (1+ Ni) = A+Ib,Then 2 ×5 ×10 ×...... ×(1+N2) is Equal To. - Mathematics

Advertisements
Advertisements

Question

If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.

Options

  • `sqrt(a^2 +b^2)`

  • `sqrt(a^2 +b^2)`

  • `sqrt(a^2 - b^2)`

  • `a^2 +b^2`

  • `a^2 -b^2`

  • a+b

MCQ

Solution

`a^2 +b^2`

(1 + i)(1 + 2i)(1 + 3i) ......(1 + ni) = a + ib

Taking modulus on both the sides, we get:

`|(1+i)(1+2i) (1+3i).............. (1+ni)| = |a+ib|`

`|(1+i)(1+2i)(1+3i)..............(1+ni)|`can be written as `|(1+i)|  |(1+2i)|  |(1+3i)|........|(1+ ni)|`

\[\sqrt{1^2 + 1^2} \times \sqrt{1^2 + 2^2} \times \sqrt{1^2 + 3^2} \times . . . \times \sqrt{1 + n^2} = \sqrt{a^2 + b^2}\]

\[\Rightarrow \sqrt{2} \times \sqrt{5} \times \sqrt{10} \times . . . \times \sqrt{1 + n^2} = \sqrt{a^2 + b^2}\]

Squaring on both the sides, we get:

\[2 \times 5 \times 10 \times . . . \times (1 + n^2 ) = a^2 + b^2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.6 [Page 63]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.6 | Q 3 | Page 63

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If (x + iy)3 = u + iv, then show that `u/x + v/y  =4(x^2 - y^2)`


Find the conjugate of the following complex number:

\[\frac{1}{3 + 5i}\]


Find the conjugate of the following complex number:

\[\frac{(1 + i)(2 + i)}{3 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]


Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].


Find the modulus and argument of the following complex number and hence express in the polar form:

1 + i


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\sqrt{3} + i\]


Find the modulus and argument of the following complex number and hence express in the polar form:

1 − i


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 + 2i}{1 - 3i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

 sin 120° - i cos 120° 


Find the modulus and argument of the following complex number and hence express in the polar form:

 \[\frac{- 16}{1 + i\sqrt{3}}\]


If \[\frac{( a^2 + 1 )^2}{2a - i} = x + iy, \text { then } x^2 + y^2\] is equal to


If \[x + iy = (1 + i)(1 + 2i)(1 + 3i)\],then x2 + y2 =


If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]


If |z2 – 1| = |z|2 + 1, then show that z lies on imaginary axis.


If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.


If a complex number lies in the third quadrant, then its conjugate lies in the ______.


If z1 = `sqrt(3) + i  sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.


What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?


If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.


State True or False for the following:

If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.


What is the conjugate of `(2 - i)/(1 - 2i)^2`?


If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?


sinx + icos2x and cosx – isin2x are conjugate to each other for ______.


If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×