Advertisements
Advertisements
Question
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
Options
π
`pi/2`
`pi/3`
`pi/6`
Solution
π
Given:
\[\frac{3 + 2i\sin\theta}{1 - 2i \sin\theta}\] is a real number
On rationalising, we get,
\[\frac{3 + 2i \sin \theta}{1 - 2i \sin \theta} \times \frac{1 + 2i \sin \theta}{1 + 2i \sin \theta} \]
\[ = \frac{(3 + 2i \sin \theta) (1 + 2i \sin \theta)}{(1 )^2 - (2i \sin \theta )^2}\]
\[ = \frac{3 + 2i \sin \theta + 6i \sin \theta + 4 i^2 \sin^2 \theta}{1 + 4 \sin^2 \theta}\]
\[ = \frac{3 - 4 \sin^2 \theta + 8i \sin \theta}{1 + 4 \sin^2 \theta} \left[ \because i^2 = - 1 \right]\]
\[ = \frac{3 - 4 \sin^2 \theta}{1 + 4 \sin^2 \theta} + i\frac{8 \sin \theta}{1 + 4 \sin^2 \theta}\] For the above term to be real, the imaginary part has to be zero.
\[\therefore \frac{8\sin\theta}{1 + 4 \sin^2 \theta} = 0\]
\[ \Rightarrow 8\sin\theta = 0\]
For this to be zero,
sin\[\theta\]= 0
\[\Rightarrow\]\[\theta\]= 0,
\[\pi, 2\pi, 3\pi . . .\]
But
\[0 < \theta < 2\pi\]
Hence,
\[\theta = \pi\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`
Evaluate the following:
(ii) i528
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Write (i25)3 in polar form.
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
Write −1 + i \[\sqrt{3}\] in polar form .
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
The principal value of the amplitude of (1 + i) is
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
Find a and b if a + 2b + 2ai = 4 + 6i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Show that `(-1 + sqrt(3)"i")^3` is a real number
Evaluate the following : i403
Evaluate the following : `1/"i"^58`
If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.
State True or False for the following:
The order relation is defined on the set of complex numbers.
Show that `(-1+sqrt3i)^3` is a real number.