English

If 3 + 2 I Sin θ 1 − 2 I Sin θ is a Real Number and 0 < θ < 2π, Then θ = - Mathematics

Advertisements
Advertisements

Question

If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =

Options

  • π

  • `pi/2`

  • `pi/3`

  • `pi/6`

MCQ

Solution

π
Given:

\[\frac{3 + 2i\sin\theta}{1 - 2i \sin\theta}\] is a real number

On rationalising, we get,

\[\frac{3 + 2i \sin \theta}{1 - 2i \sin \theta} \times \frac{1 + 2i \sin \theta}{1 + 2i \sin \theta} \]

\[ = \frac{(3 + 2i \sin \theta) (1 + 2i \sin \theta)}{(1 )^2 - (2i \sin \theta )^2}\]

\[ = \frac{3 + 2i \sin \theta + 6i \sin \theta + 4 i^2 \sin^2 \theta}{1 + 4 \sin^2 \theta}\]

\[ = \frac{3 - 4 \sin^2 \theta + 8i \sin \theta}{1 + 4 \sin^2 \theta} \left[ \because i^2 = - 1 \right]\]

\[ = \frac{3 - 4 \sin^2 \theta}{1 + 4 \sin^2 \theta} + i\frac{8 \sin \theta}{1 + 4 \sin^2 \theta}\] For the above term to be real, the imaginary part has to be zero.

\[\therefore \frac{8\sin\theta}{1 + 4 \sin^2 \theta} = 0\]

\[ \Rightarrow 8\sin\theta = 0\]

For this to be zero,
sin\[\theta\]= 0

\[\Rightarrow\]\[\theta\]= 0,

\[\pi, 2\pi, 3\pi . . .\]

But

\[0 < \theta < 2\pi\]

Hence,

\[\theta = \pi\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.6 [Page 63]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.6 | Q 2 | Page 63

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Evaluate the following:

(ii) i528


Evaluate the following:

\[i^{49} + i^{68} + i^{89} + i^{110}\]


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


Write (i25)3 in polar form.


Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .


Write −1 + \[\sqrt{3}\] in polar form .


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


The principal value of the amplitude of (1 + i) is


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


Find a and b if a + 2b + 2ai = 4 + 6i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i403 


Evaluate the following : `1/"i"^58`


If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.


State True or False for the following:

The order relation is defined on the set of complex numbers.


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×