English

Write −1 + I √ 3 in Polar Form . - Mathematics

Advertisements
Advertisements

Question

Write −1 + \[\sqrt{3}\] in polar form .

Solution

\[\text{Let z }= - 1 + \sqrt{3}i . \text { Then } , \]

\[r = \left| z \right| = \sqrt{\left[ - 1 \right]^2 + \left[ \sqrt{3} \right]^2} = 2\]

\[\text { Let } \tan \alpha = \left| \frac{Im(z)}{Re (z)} \right|\]

\[ = \sqrt{3}\]

\[ \Rightarrow \alpha = \frac{\pi}{3}\]

\[\text { Since the point representing z lies in the second quadrant . Therefore, the argument of z is given by } \]

\[\theta = \pi - \alpha\]

\[ = \pi - \frac{\pi}{3}\]

\[ = \frac{2\pi}{3}\]

\[\text { So, the polar form is } r\left( \cos\theta + i\sin\theta \right)\]

\[ \therefore z = 2\left( \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.5 [Page 62]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.5 | Q 8 | Page 62

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)


Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Evaluate the following:

i457


Evaluate the following:

\[i^{37} + \frac{1}{i^{67}}\].


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


Which of the following is correct for any two complex numbers z1 and z2?

 


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i35 


Evaluate the following : i116 


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


Match the statements of column A and B.

Column A Column B
(a) The value of 1 + i2 + i4 + i6 + ... i20 is (i) purely imaginary complex number
(b) The value of `i^(-1097)` is (ii) purely real complex number
(c) Conjugate of 1 + i lies in (iii) second quadrant
(d) `(1 + 2i)/(1 - i)` lies in (iv) Fourth quadrant
(e) If a, b, c ∈ R and b2 – 4ac < 0, then
the roots of the equation ax2 + bx + c = 0
are non real (complex) and
(v) may not occur in conjugate pairs
(f) If a, b, c ∈ R and b2 – 4ac > 0, and
b2 – 4ac is a perfect square, then the
roots of the equation ax2 + bx + c = 0
(vi) may occur in conjugate pairs

State True or False for the following:

2 is not a complex number.


Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant

Show that `(-1 + sqrt3 "i")^3` is a real number.


If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×