English

If a + ib = (x+i)22x2+1 prove that a2 + b2 = (x2+1)2(2x+1)2 - Mathematics

Advertisements
Advertisements

Question

If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`

Sum

Solution

`a + ib  = (x + i)^2/(2x^2 + 1)  ......(1)` 

i के स्थान पर – i रखने से

By replacing i with –i

`a - ib  = (x + i)^2/(2x^2 + 1)  ......(2)` 

समी. (1) और (2) का गुणा करने पर

On multiplying equations (1) and (2)

`(a + ib)(a - ib)  = (x + i)^2/(2x^2 + 1) xx (x - i)^2/(2x^2 + 1)`

or `a^2  -  i^2b^2  =  [(x+i)(x - i)]^2/(2x^2  + 1)^2`

or `a^2 + b^2  = (x^2 - i^2)^2/(2x^2 + 1)^2`

or `a^2 + b^2  = (x^2  + 1)^2/(2x^2 + 1)^2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Miscellaneous Exercise [Page 113]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Miscellaneous Exercise | Q 11 | Page 113

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: i–39


Evaluate: `[i^18 + (1/i)^25]^3`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

i49 + i68 + i89 + i110


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


Solve the equation \[\left| z \right| = z + 1 + 2i\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].


Write the argument of −i.


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


If z is a complex numberthen


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if a + 2b + 2ai = 4 + 6i


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Find a and b if `1/("a" + "ib")` = 3 – 2i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Evaluate the following : `1/"i"^58`


If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.


If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×