Advertisements
Advertisements
Question
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Solution
Let \[z = x + iy\]
Then,
\[z + 1 = \left( x + 1 \right) + iy\]
\[ \Rightarrow \left| z + 1 \right| = \sqrt{\left( x + 1 \right)^2 + y^2}\]
\[\therefore \left| z + 1 \right| = z + 2\left( 1 + i \right)\]
\[ \Rightarrow \sqrt{x^2 + 2x + 1 + y^2} = \left( x + iy \right) + 2 + 2i\]
\[ \Rightarrow \sqrt{x^2 + 2x + 1 + y^2} = \left( x + 2 \right) + i\left( y + 2 \right)\]
\[ \Rightarrow \sqrt{x^2 + 2x + 1 + y^2} = \left( x + 2 \right) \text { and } y + 2 = 0\]
\[ \Rightarrow x^2 + 2x + 1 + y^2 = \left( x + 2 \right)^2 \text { and } y = - 2\]
\[ \Rightarrow x^2 + 2x + 1 + y^2 = x^2 + 4x + 4 \text { and } y = - 2\]
\[ \Rightarrow y^2 = 2x + 3 \text { and } y = - 2\]
\[ \Rightarrow 4 = 2x + 3 \text { and } y = - 2\]
\[ \Rightarrow 2x = 1 \text { and } y = - 2\]
\[ \Rightarrow x = \frac{1}{2} \text { and } y = - 2\]
\[\therefore z = x + iy = \frac{1}{2} - 2i\]
Thus,
\[z = \frac{1}{2} - 2i\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Evaluate: `[i^18 + (1/i)^25]^3`
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Express the following complex number in the standard form a + i b:
\[(1 + i)(1 + 2i)\]
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
Solve the equation \[\left| z \right| = z + 1 + 2i\].
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
Write (i25)3 in polar form.
Write the argument of −i.
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
The principal value of the amplitude of (1 + i) is
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
Find a and b if a + 2b + 2ai = 4 + 6i
Find a and b if `1/("a" + "ib")` = 3 – 2i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Evaluate the following : i888
Evaluate the following : i116
Evaluate the following : `1/"i"^58`
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
State True or False for the following:
2 is not a complex number.