English

Express the following in the form of a + ib, a, b∈R i = −1. State the values of a and b: (1 + i)−3 - Mathematics and Statistics

Advertisements
Advertisements

Question

Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 

Sum

Solution

(1 + i)−3  = `1/((1 + "i")^3`

= `1/(1 + 3"i" + 3"i"^2 + "i"^3)`

= `1/(1 + 3"i" - 3 - "i")`   ...[∵  i2 = – 1, i3 = – i]

= `1/(-2 + 2"i")`

= `1/(-2 + 2"i") xx (-2 - 2"i")/(-2 - 2"i")`

= `(-2 - 2"i")/(4 - 4"i"^2)`

= `(-2 - 2"i")/(4 + 4)`   ...[∵  i2 = – 1]

= `(-2 -2"i")/8`

= `-1/4 - 1/4 "i"`

This is of the form a + bi, where a = `-1/4` and b = `-1/4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.1 [Page 6]

RELATED QUESTIONS

Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: (1 – i)4


Evaluate: `[i^18 + (1/i)^25]^3`


Evaluate the following:

(ii) i528


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Find the value of the following expression:

i49 + i68 + i89 + i110


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


If z is a complex numberthen


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:

`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`


Evaluate the following : i35 


Evaluate the following : i888 


Evaluate the following : i116 


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.


If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.


If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Show that `(-1+ sqrt(3)i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×