English

If Z = 1 ( 1 − I ) ( 2 + 3 I ) , than | Z | = - Mathematics

Advertisements
Advertisements

Question

\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]

Options

  • 1

  • \[1/\sqrt{26}\]

  • \[5/\sqrt{26}\]

  • none of these

MCQ

Solution

\[1/\sqrt{26}\]

\[\text { Let  }z = \frac{1}{\left( 1 - i \right)\left( 2 + 3i \right)}\]

\[ \Rightarrow z = \frac{1}{2 + i - 3 i^2} \]

\[ \Rightarrow z = \frac{1}{2 + i + 3}\]

\[\Rightarrow z=\frac{1}{5 + i}\times\frac{5 - i}{5 - i}\]

\[\Rightarrow z=\frac{5 - i}{25 - i^2}\]

\[ \Rightarrow z=\frac{5 - i}{25 + 1}\]

\[\Rightarrow z=\frac{5 - i}{26}\]

\[\Rightarrow z = \frac{5}{26} - \frac{i}{26}\]

\[\Rightarrow \left| z \right|=\sqrt{\frac{25}{676} + \frac{1}{676}}\]

\[\Rightarrow z = \frac{1}{\sqrt{26}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.6 [Page 65]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.6 | Q 22 | Page 65

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

(ii) i528


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{2 + 3i}{4 + 5i}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Find the multiplicative inverse of the following complex number:

1 − i


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


Solve the equation \[\left| z \right| = z + 1 + 2i\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].


Write (i25)3 in polar form.


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


The polar form of (i25)3 is


The principal value of the amplitude of (1 + i) is


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


The amplitude of \[\frac{1}{i}\] is equal to


Find a and b if a + 2b + 2ai = 4 + 6i


Find a and b if (a – b) + (a + b)i = a + 5i


Evaluate the following : i93  


Show that 1 + i10 + i20 + i30 is a real number


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×