English

Find the Value of the Following Expression: I 592 + I 590 + I 588 + I 586 + I 584 I 582 + I 580 + I 578 + I 576 + I 574 - Mathematics

Advertisements
Advertisements

Question

Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]

Solution

\[ \frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]

\[ = \frac{i^{4 \times 148} + i^{4 \times 147 + 2} + i^{4 \times 147} + i^{4 \times 146 + 2} + i^{4 \times 146}}{i^{4 \times 145 + 2} + i^{4 \times 145} + i^{4 \times 144 + 2} + i^{4 \times 144} + i^{4 \times 143 + 2}}\]

\[ = \frac{\left( i^4 \right)^{148} + \left\{ \left( i^4 \right)^{147} \times i^2 \right\} + \left\{ \left( i^4 \right)^{146} \right\} + \left\{ \left( i^4 \right)^{146} \times i^2 \right\} + \left\{ \left( i^4 \right)^{146} \right\}}{\left\{ \left( i^4 \right)^{145} \times i^2 \right\} + \left\{ \left( i^4 \right)^{145} \right\} + \left\{ \left( i^4 \right)^{144} \times i^2 \right\} + \left\{ \left( i^4 \right)^{144} \right\} + \left\{ \left( i^4 \right)^{143} \times i^2 \right\}}\]

\[ = \frac{1 + i^2 + 1 + i^2 + 1}{i^2 + 1 + i^2 + 1 + i^2} \left[ \because i^4 = 1 \right]\]

\[ = \frac{1 - 1 + 1 - 1 + 1}{- 1 + 1 - 1 + 1 - 1} \left[ \because i^2 = - 1 \right]\]

\[ = - 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.1 [Page 4]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.1 | Q 3.5 | Page 4

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

i + i2 + i3 + i4


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]


Write 1 − i in polar form.


Write the argument of −i.


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


The principal value of the amplitude of (1 + i) is


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


The argument of \[\frac{1 - i}{1 + i}\] is


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


The value of \[(1 + i )^4 + (1 - i )^4\] is


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if a + 2b + 2ai = 4 + 6i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Evaluate the following : i888 


Evaluate the following : i116 


Answer the following:

Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Show that `(-1+ sqrt(3)i)^3` is a real number.


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×