Advertisements
Advertisements
Question
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
Options
\[\frac{2a}{a^2 + b^2}\]
\[\frac{2ab}{a^2 - b^2}\]
\[\frac{a^2 - b^2}{a^2 + b^2}\]
none of these
Solution
\[\frac{2ab}{a^2 - b^2}\]
\[z = \frac{a + ib}{a - ib} \times \frac{a + ib}{a + ib}\]
\[ \Rightarrow z = \frac{a^2 + i^2 b^2 + 2abi}{a^2 - i^2 b^2}\]
\[ \Rightarrow z = \frac{a^2 - b^2 + 2abi}{a^2 + b^2}\]
\[ \Rightarrow z = \frac{a^2 - b^2}{a^2 + b^2} + i\frac{2ab}{a^2 + b^2}\]
\[ \Rightarrow \text { Re }\left( z \right) = \frac{a^2 - b^2}{a^2 + b^2}, \text { Im }\left( z \right) = \frac{2ab}{a^2 + b^2}\]
\[\tan \alpha = \left| \frac{Im\left( z \right)}{Re\left( z \right)} \right|\]
\[ = \frac{2ab}{a^2 - b^2}\]
\[\alpha = \tan^{- 1} \left( \frac{2ab}{a^2 - b^2} \right)\]
\[\text { Since, z lies in the first quadrant . Therefore, } \]
\[\arg (z) = \alpha = \tan^{- 1} \left( \frac{2ab}{a^2 - b^2} \right)\]
\[\tan \theta = \frac{2ab}{a^2 - b^2}\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Express the given complex number in the form a + ib: (1 – i)4
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Evaluate: `[i^18 + (1/i)^25]^3`
Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`
Evaluate the following:
i457
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Find the value of the following expression:
i30 + i80 + i120
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
Write the argument of −i.
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
State True or False for the following:
The order relation is defined on the set of complex numbers.