English

If Z = 1 + 7 I ( 2 − I ) 2 , Then - Mathematics

Advertisements
Advertisements

Question

If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then

Options

  • \[\left| z \right| = 2\]

  • \[\left| z \right| = \frac{1}{2}\]

  • amp (z) = \[\frac{\pi}{4}\]

  •  amp (z) = \[\frac{3\pi}{4}\]

MCQ

Solution

amp (z) = \[\frac{3\pi}{4}\]

\[z = \frac{1 + 7i}{\left( 2 - i \right)^2}\]

\[ \Rightarrow z = \frac{1 + 7i}{4 + i^2 - 4i}\]

\[ \Rightarrow z = \frac{1 + 7i}{4 - 1 - 4i} \left[ \because i^2 = - 1 \right]\]

\[ \Rightarrow z = \frac{1 + 7i}{3 - 4i}\]

\[ \Rightarrow z = \frac{1 + 7i}{3 - 4i} \times \frac{3 + 4i}{3 + 4i}\]

\[ \Rightarrow z = \frac{3 + 4i + 21i + 28 i^2}{9 - 16 i^2}\]

\[ \Rightarrow z = \frac{3 - 28 + 25i}{9 + 16}\]

\[ \Rightarrow z = \frac{- 25 + 25i}{25}\]

\[ \Rightarrow z = - 1 + i\]

\[\tan \alpha = \left| \frac{Im\left( z \right)}{Re\left( z \right)} \right|\]

\[ = 1\]

\[ \Rightarrow \alpha = \frac{\pi}{4}\]

\[\text { Since, z lies in the second quadrant }. \]

\[\text { Therefore, amp } (z) = \pi - \alpha\]

\[ = \pi - \frac{\pi}{4} \]

\[ = \frac{3\pi}{4} \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.6 [Page 65]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.6 | Q 29 | Page 65

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Evaluate: `[i^18 + (1/i)^25]^3`


Evaluate the following:

(ii) i528


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Evaluate the following:

 \[i^{30} + i^{40} + i^{60}\]


Find the value of the following expression:

i5 + i10 + i15


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[(1 + i)(1 + 2i)\]


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Express the following complex number in the standard form a + i b:

\[\frac{2 + 3i}{4 + 5i}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.


Write 1 − i in polar form.


Write the argument of −i.


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


The polar form of (i25)3 is


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]


A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]


If z is a complex numberthen


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Find a and b if `1/("a" + "ib")` = 3 – 2i


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Evaluate the following : i30 + i40 + i50 + i60 


Show that 1 + i10 + i20 + i30 is a real number


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×