Advertisements
Advertisements
Question
If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then
Options
\[\left| z \right| = 2\]
\[\left| z \right| = \frac{1}{2}\]
amp (z) = \[\frac{\pi}{4}\]
amp (z) = \[\frac{3\pi}{4}\]
Solution
amp (z) = \[\frac{3\pi}{4}\]
\[z = \frac{1 + 7i}{\left( 2 - i \right)^2}\]
\[ \Rightarrow z = \frac{1 + 7i}{4 + i^2 - 4i}\]
\[ \Rightarrow z = \frac{1 + 7i}{4 - 1 - 4i} \left[ \because i^2 = - 1 \right]\]
\[ \Rightarrow z = \frac{1 + 7i}{3 - 4i}\]
\[ \Rightarrow z = \frac{1 + 7i}{3 - 4i} \times \frac{3 + 4i}{3 + 4i}\]
\[ \Rightarrow z = \frac{3 + 4i + 21i + 28 i^2}{9 - 16 i^2}\]
\[ \Rightarrow z = \frac{3 - 28 + 25i}{9 + 16}\]
\[ \Rightarrow z = \frac{- 25 + 25i}{25}\]
\[ \Rightarrow z = - 1 + i\]
\[\tan \alpha = \left| \frac{Im\left( z \right)}{Re\left( z \right)} \right|\]
\[ = 1\]
\[ \Rightarrow \alpha = \frac{\pi}{4}\]
\[\text { Since, z lies in the second quadrant }. \]
\[\text { Therefore, amp } (z) = \pi - \alpha\]
\[ = \pi - \frac{\pi}{4} \]
\[ = \frac{3\pi}{4} \]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Evaluate: `[i^18 + (1/i)^25]^3`
Evaluate the following:
(ii) i528
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Find the value of the following expression:
i5 + i10 + i15
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[(1 + i)(1 + 2i)\]
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
Write 1 − i in polar form.
Write the argument of −i.
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
The polar form of (i25)3 is
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
If z is a complex number, then
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Find a and b if `1/("a" + "ib")` = 3 – 2i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Evaluate the following : i30 + i40 + i50 + i60
Show that 1 + i10 + i20 + i30 is a real number
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.