English

Express the given complex number in the form a + ib: (15+i25)-(4+i52) - Mathematics

Advertisements
Advertisements

Question

Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`

Sum

Solution

`(1/5 + i2/5) - (4 + i 5/2 )`

= `1/5 + 2/5 i-4 - 5/2i`

= `(-4+1/5) + (2/5-5/2)i`

= `((1 - 20)/5) + i ((4 - 25)/10)`

= `(-19)/5 + (4 - 25)/10 i`

= `(-19)/5 + (-21)/10i`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Exercise 5.1 [Page 104]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Exercise 5.1 | Q 6 | Page 104

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


The principal value of the amplitude of (1 + i) is


\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is 


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


Find a and b if `1/("a" + "ib")` = 3 – 2i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : `1/"i"^58`


Evaluate the following : i30 + i40 + i50 + i60 


If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.


If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Show that `(-1+ sqrt(3)i)^3` is a real number.


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×