English

Evaluate the Following: X 4 − 4 X 3 + 4 X 2 + 8 X + 44 , When X = 3 + 2 I - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]

Solution

\[x = 3 + 2i\]

\[ \Rightarrow x^2 = \left( 3 + 2i \right)^2 \]

\[ = 9 + 4 i^2 + 12i\]

\[ = 5 + 12i\]

\[ \Rightarrow x^3 = x^2 \times x\]

\[ = \left( 5 + 12i \right) \times \left( 3 + 2i \right)\]

\[ = 15 + 10i + 36i - 24\]

\[ = - 9 + 46i\]

\[ \Rightarrow x^4 = \left( x^2 \right)^2 \]

\[ = \left( 5 + 12i \right)^2 \]

\[ = 25 + 144 i^2 + 120i\]

\[ = - 119 + 120i\]

\[ \Rightarrow x^4 - 4 x^3 + 4 x^2 + 8x + 44 = - 119 + 120i - 4\left( - 9 + 46i \right) + 4\left( 5 + 12i \right) + 8\left( 3 + 2i \right) + 44\]

\[ = - 119 + 120i + 36 - 184i + 20 + 48i + 24 + 16i + 44\]

\[ = 5\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.2 [Page 32]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.2 | Q 16.2 | Page 32

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate the following:

 \[\frac{1}{i^{58}}\]


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

i30 + i80 + i120


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


Find the real value of x and y, if

\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


Write (i25)3 in polar form.


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].

Disclaimer: There is a misprinting in the question. It should be  \[\left( 1 + i\sqrt{3} \right)\]  instead of \[\left( 1 + \sqrt{3} \right)\].


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


The polar form of (i25)3 is


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


The argument of \[\frac{1 - i}{1 + i}\] is


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


The value of \[(1 + i )^4 + (1 - i )^4\] is


A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


Evaluate the following : i–888 


Evaluate the following : i30 + i40 + i50 + i60 


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Show that `(-1 + sqrt3 "i")^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×