English

If a = Cos θ + I Sin θ, Then 1 + a 1 − a = - Mathematics

Advertisements
Advertisements

Question

If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]

Options

  • \[\cot\frac{\theta}{2}\]

  • cot θ

  • \[i \cot\frac{\theta}{2}\]

  • \[i \tan\frac{\theta}{2}\]

MCQ

Solution

\[i \cot\frac{\theta}{2}\]

\[a = \cos\theta + i\sin\theta \left( \text { given } \right)\]

\[ \Rightarrow \frac{1 + a}{1 - a} = \frac{1 + \cos\theta + i\sin\theta}{1 - \cos\theta - i\sin\theta}\]

\[ \Rightarrow \frac{1 + a}{1 - a} = \frac{1 + \cos\theta + i\sin\theta}{1 - \cos\theta - i\sin\theta} \times \frac{1 - \cos\theta + i\sin\theta}{1 - \cos\theta + i\sin\theta}\]

\[\Rightarrow \frac{1 + a}{1 - a}=\frac{\left( 1 + i\sin\theta \right)^2 - \cos^2 \theta}{\left( 1 - \cos\theta \right)^2 - \left( i\sin\theta \right)^2}\]

\[\Rightarrow \frac{1 + a}{1 - a}=\frac{1 - \sin^2 \theta + 2i\sin\theta - \cos^2 \theta}{1 + \cos^2 \theta - 2\cos\theta + \sin^2 \theta}\]

\[\Rightarrow \frac{1 + a}{1 - a}=\frac{1 - \left( \sin^2 \theta + \cos^2 \theta \right) + 2i\sin\theta}{1 + \left( \sin^2 \theta + \cos^2 \theta \right) - 2\cos\theta}\]

\[\Rightarrow \frac{1 + a}{1 - a}=\frac{2i\sin\theta}{2(1 - \cos\theta)}\]

\[\Rightarrow $\frac{1 + a}{1 - a} =\frac{2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2 \sin^2 \frac{\theta}{2}}\]

\[\Rightarrow \frac{1 + a}{1 - a}=\frac{i\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}\]

\[\Rightarrow \frac{1 + a}{1 - a}=i \cot\frac{\theta}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.6 [Page 64]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.6 | Q 9 | Page 64

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Find the value of the following expression:

i49 + i68 + i89 + i110


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Find the real value of x and y, if

\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


The argument of \[\frac{1 - i}{1 + i}\] is


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is 


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if a + 2b + 2ai = 4 + 6i


Find a and b if abi = 3a − b + 12i


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i35 


Evaluate the following : i93  


Evaluate the following : i30 + i40 + i50 + i60 


State True or False for the following:

The order relation is defined on the set of complex numbers.


Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant

Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×