Advertisements
Advertisements
Question
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
Options
\[\cot\frac{\theta}{2}\]
cot θ
\[i \cot\frac{\theta}{2}\]
\[i \tan\frac{\theta}{2}\]
Solution
\[i \cot\frac{\theta}{2}\]
\[a = \cos\theta + i\sin\theta \left( \text { given } \right)\]
\[ \Rightarrow \frac{1 + a}{1 - a} = \frac{1 + \cos\theta + i\sin\theta}{1 - \cos\theta - i\sin\theta}\]
\[ \Rightarrow \frac{1 + a}{1 - a} = \frac{1 + \cos\theta + i\sin\theta}{1 - \cos\theta - i\sin\theta} \times \frac{1 - \cos\theta + i\sin\theta}{1 - \cos\theta + i\sin\theta}\]
\[\Rightarrow \frac{1 + a}{1 - a}=\frac{\left( 1 + i\sin\theta \right)^2 - \cos^2 \theta}{\left( 1 - \cos\theta \right)^2 - \left( i\sin\theta \right)^2}\]
\[\Rightarrow \frac{1 + a}{1 - a}=\frac{1 - \sin^2 \theta + 2i\sin\theta - \cos^2 \theta}{1 + \cos^2 \theta - 2\cos\theta + \sin^2 \theta}\]
\[\Rightarrow \frac{1 + a}{1 - a}=\frac{1 - \left( \sin^2 \theta + \cos^2 \theta \right) + 2i\sin\theta}{1 + \left( \sin^2 \theta + \cos^2 \theta \right) - 2\cos\theta}\]
\[\Rightarrow \frac{1 + a}{1 - a}=\frac{2i\sin\theta}{2(1 - \cos\theta)}\]
\[\Rightarrow $\frac{1 + a}{1 - a} =\frac{2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2 \sin^2 \frac{\theta}{2}}\]
\[\Rightarrow \frac{1 + a}{1 - a}=\frac{i\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}\]
\[\Rightarrow \frac{1 + a}{1 - a}=i \cot\frac{\theta}{2}\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Find the value of the following expression:
i49 + i68 + i89 + i110
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
The argument of \[\frac{1 - i}{1 + i}\] is
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Find a and b if a + 2b + 2ai = 4 + 6i
Find a and b if abi = 3a − b + 12i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Show that `(-1 + sqrt(3)"i")^3` is a real number
Evaluate the following : i35
Evaluate the following : i93
Evaluate the following : i30 + i40 + i50 + i60
State True or False for the following:
The order relation is defined on the set of complex numbers.
Match the statements of Column A and Column B.
Column A | Column B |
(a) The polar form of `i + sqrt(3)` is | (i) Perpendicular bisector of segment joining (–2, 0) and (2, 0). |
(b) The amplitude of `-1 + sqrt(-3)` is | (ii) On or outside the circle having centre at (0, –4) and radius 3. |
(c) If |z + 2| = |z − 2|, then locus of z is | (iii) `(2pi)/3` |
(d) If |z + 2i| = |z − 2i|, then locus of z is | (iv) Perpendicular bisector of segment joining (0, –2) and (0, 2). |
(e) Region represented by |z + 4i| ≥ 3 is | (v) `2(cos pi/6 + i sin pi/6)` |
(f) Region represented by |z + 4| ≤ 3 is | (vi) On or inside the circle having centre (–4, 0) and radius 3 units. |
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in | (vii) First quadrant |
(h) Reciprocal of 1 – i lies in | (viii) Third quadrant |
Show that `(-1+sqrt3i)^3` is a real number.