Advertisements
Advertisements
Question
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
Options
\[\frac{\pi}{3}\]
\[- \frac{\pi}{3}\]
\[\frac{\pi}{6}\]
\[- \frac{\pi}{6}\]
Solution
\[\frac{\pi}{6}\]
\[\text { Let }z = \frac{1 + i\sqrt{3}}{\sqrt{3} + i}\]
\[ \Rightarrow z=\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\times\frac{\sqrt{3} - i}{\sqrt{3} - i}\]
\[ \Rightarrow z=\frac{\sqrt{3} + 2i - \sqrt{3} i^2}{3 - i^2}\]
\[ \Rightarrow z=\frac{\sqrt{3} + \sqrt{3} + 2i}{4}\]
\[ \Rightarrow z = \frac{2\sqrt{3} + 2i}{4}\]
\[ \Rightarrow z = \frac{\sqrt{3}}{2} + \frac{1}{2}i\]
\[\tan \alpha = \left| \frac{Im(z)}{Re(z)} \right|\]
\[ = \frac{1}{\sqrt{3}}\]
\[ \Rightarrow \alpha = \frac{\pi}{6}\]
\[\text { Since, z lies in the first quadrant } . \]
\[\text{Therefore,} arg(z)=\tan^{- 1}\left( \frac{1}{\sqrt{3}} \right)=\frac{\pi}{6}\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Evaluate: `[i^18 + (1/i)^25]^3`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
Write −1 + i \[\sqrt{3}\] in polar form .
Write the argument of −i.
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
The polar form of (i25)3 is
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
The principal value of the amplitude of (1 + i) is
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
Which of the following is correct for any two complex numbers z1 and z2?
Find a and b if a + 2b + 2ai = 4 + 6i
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i403
Evaluate the following : `1/"i"^58`
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
Match the statements of Column A and Column B.
Column A | Column B |
(a) The polar form of `i + sqrt(3)` is | (i) Perpendicular bisector of segment joining (–2, 0) and (2, 0). |
(b) The amplitude of `-1 + sqrt(-3)` is | (ii) On or outside the circle having centre at (0, –4) and radius 3. |
(c) If |z + 2| = |z − 2|, then locus of z is | (iii) `(2pi)/3` |
(d) If |z + 2i| = |z − 2i|, then locus of z is | (iv) Perpendicular bisector of segment joining (0, –2) and (0, 2). |
(e) Region represented by |z + 4i| ≥ 3 is | (v) `2(cos pi/6 + i sin pi/6)` |
(f) Region represented by |z + 4| ≤ 3 is | (vi) On or inside the circle having centre (–4, 0) and radius 3 units. |
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in | (vii) First quadrant |
(h) Reciprocal of 1 – i lies in | (viii) Third quadrant |
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8