English

If Z = − 2 1 + I √ 3 ,Then the Value of Arg (Z) is - Mathematics

Advertisements
Advertisements

Question

If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is

Options

  • π

  • \[\frac{\pi}{3}\]

  • \[\frac{2\pi}{3}\]

  • \[\frac{\pi}{4}\]

MCQ

Solution

\[\frac{2\pi}{3}\]

z =\[\frac{- 2}{1 + i\sqrt{3}}\]

Rationalising z, we get,

\[z = \frac{- 2}{1 + i\sqrt{3}} \times \frac{1 - i\sqrt{3}}{1 - i\sqrt{3}}\]

\[ \Rightarrow z = \frac{- 2 + i2\sqrt{3}}{1 + 3}\]

\[ \Rightarrow z = \frac{- 1 + i\sqrt{3}}{2} \]

\[ \Rightarrow z = \frac{- 1}{2} + \frac{i\sqrt{3}}{2}\]

\[\tan \alpha = \left| \frac{Im(z)}{Re(z)} \right|\]

\[ = \sqrt{3}\]

\[ \Rightarrow \alpha = \frac{\pi}{3}\]

\[\text { Since, z lies in the second quadrant } . \]

\[\text { Therefore,}\arg (z) = \pi - \frac{\pi}{3}\]

                                       \[ = \frac{2\pi}{3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.6 [Page 64]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.6 | Q 8 | Page 64

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate the following:

 \[\frac{1}{i^{58}}\]


Find the value of the following expression:

i5 + i10 + i15


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:

`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`


Evaluate the following : i35 


Evaluate the following : i93  


Evaluate the following : i403 


Evaluate the following : `1/"i"^58`


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×