English

If find z1=2−i,z2=1+i, find |z1+z2+1z1−z2+i| - Mathematics

Advertisements
Advertisements

Question

If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]

Sum
This question doesn't have a solution currently. Please check again in a few days.
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.2 [Page 32]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.2 | Q 5 | Page 32

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Evaluate the following:

 \[\frac{1}{i^{58}}\]


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Express the following complex number in the standard form a + i b:

\[\frac{2 + 3i}{4 + 5i}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


Write −1 + \[\sqrt{3}\] in polar form .


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].

Disclaimer: There is a misprinting in the question. It should be  \[\left( 1 + i\sqrt{3} \right)\]  instead of \[\left( 1 + \sqrt{3} \right)\].


The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.


If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Evaluate the following : i116 


Evaluate the following : `1/"i"^58`


If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.


State True or False for the following:

2 is not a complex number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×