Advertisements
Advertisements
Question
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
Solution
\[x = - 2 - \sqrt{3}i\]
\[ \Rightarrow x^2 = \left( - 2 - \sqrt{3}i \right)^2 \]
\[ = ( - 2 )^2 + ( - \sqrt{3}i )^2 + 2( - 2)( - \sqrt{3}i)\]
\[ = 4 + 3 i^2 + 4\sqrt{3}i\]
\[ = 4 - 3 + 4\sqrt{3}i [ \because i^2 = - 1]\]
\[ = 1 + 4\sqrt{3}i\]
\[ \Rightarrow x^3 = \left( 1 + 4\sqrt{3}i \right) \times \left( - 2 - \sqrt{3}i \right)\]
\[ = - 2 - \sqrt{3}i - 8\sqrt{3}i - 12 i^2 \]
\[ = 10 - 9\sqrt{3}i [ \because i^2 = - 1]\]
\[ \Rightarrow x^4 = \left( 1 + 4\sqrt{3}i \right)^2 \]
\[ = 1 + 48 i^2 + 8\sqrt{3}i\]
\[ = - 47 + 8\sqrt{3}i [ \because i^2 = - 1]\]
\[ \Rightarrow 2 x^4 + 5 x^3 + 7 x^2 - x + 41 = 2( - 47 + 8\sqrt{3}i ) + 5\left( 10 - 9\sqrt{3}i \right) + 7\left( 1 + 4\sqrt{3}i \right) - \left( - 2 - \sqrt{3}i \right) + 41\]
\[ = - 94 + 16\sqrt{3}i + 50 - 45\sqrt{3}i + 7 + 28\sqrt{3}i + 2 + \sqrt{3}i + 41\]
\[ = 6\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: i9 + i19
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Evaluate the following:
(ii) i528
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[(1 + i)(1 + 2i)\]
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
Write −1 + i \[\sqrt{3}\] in polar form .
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
The amplitude of \[\frac{1}{i}\] is equal to
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Evaluate the following : i35
Evaluate the following : i888
Evaluate the following : `1/"i"^58`
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
Show that `(-1+ sqrt(3)i)^3` is a real number.
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`