Advertisements
Advertisements
Question
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
Solution
\[\frac{\left( 1 + i \right)^m}{\left( 1 - i \right)^{m - 2}}\]
\[ = \frac{\left( 1 + i \right)^m}{\left( 1 - i \right)^m} \times \left( 1 - i \right)^2 \]
\[ = \left( \frac{1 + i}{1 - i} \times \frac{1 + i}{1 + i} \right)^m \times \left( 1 + i^2 - 2i \right)\]
\[ = \left( \frac{1 + i^2 + 2i}{1 - i^2} \right)^m \times \left( 1 - 1 - 2i \right)\]
\[ = \left( \frac{1 - 1 + 2i}{1 + 1} \right)^m \times \left( - 2i \right)\]
\[ = - 2i\left( i^m \right)\]
\[ = - 2 \left( i \right)^{m + 1} \]
\[\text { For this to be real, the smallest positive value of m will be }1 . \]
\[\text{Thus}, i^{1 + 1} = i^2 = - 1,\text { which is real } .\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: (1 – i)4
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Evaluate the following:
i457
Evaluate the following:
\[\frac{1}{i^{58}}\]
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Find the value of the following expression:
i30 + i80 + i120
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
Write 1 − i in polar form.
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
The argument of \[\frac{1 - i}{1 + i}\] is
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
Which of the following is correct for any two complex numbers z1 and z2?
Find a and b if abi = 3a − b + 12i
Find a and b if `1/("a" + "ib")` = 3 – 2i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Evaluate the following : i116
Show that 1 + i10 + i20 + i30 is a real number
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.