Advertisements
Advertisements
Question
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
Solution
\[ \text { Let }z = \tan \alpha - i \]
\[ \because \tan \alpha\text { is periodic with period } \pi . \text { So, let us take } \]
\[\alpha \in [0, \frac{\pi}{2}) \cup ( \frac{\pi}{2}, \pi]\]
\[\text { Case I }: \]
\[z = \tan \alpha - i \]
\[ \Rightarrow \left| z \right| = \sqrt{\tan^2 + 1}\]
\[ = \left| \sec \alpha \right| \left[ \because 0 < \alpha < \frac{\pi}{2} \right]\]
\[ = \sec \alpha\]
\[\text { Let } \beta \text { be an acute angle given by }\tan \beta = \left| \frac{Im (z)}{Re(z)} \right|\]
\[\tan \beta = \frac{1}{\left| \tan \alpha \right|}\]
\[ = \left| \cot \alpha \right|\]
\[ = \cot \alpha\]
\[ = \tan \left( \frac{\pi}{2} - \alpha \right)\]
\[ \Rightarrow \beta = \frac{\pi}{2} - \alpha \]
\[\text { We can see that Re }(z) > 0 \text { and Im}(z) < 0 . \text { So, z lies in the fourth quadrant }. \]
\[ \therefore \arg(z) = - \beta = \alpha - \frac{\pi}{2}\]
\[\text { Thus, z in the polar form is given by }\]
\[z = \sec \alpha \left\{ \cos\left( \alpha - \frac{\pi}{2} \right) + i\sin \left( \alpha - \frac{\pi}{2} \right) \right\} \]
\[\text { Case II }: \]
\[z = \tan \alpha - i \]
\[ \Rightarrow \left| z \right| = \sqrt{\tan^2 + 1}\]
\[ = \left| \sec \alpha \right| \left[ \because \frac{\pi}{2} < \alpha < \pi \right]\]
\[ = - \sec \alpha\]
\[\text { Let } \beta \text { be an acute angle given by } \tan \beta = \left| \frac{Im (z)}{Re(z)} \right|\]
\[\tan \beta = \frac{1}{\left| \tan \alpha \right|}\]
\[ = \left| \cot \alpha \right|\]
\[ = - \cot \alpha\]
\[ = \tan \left( \alpha - \frac{\pi}{2} \right)\]
\[ \Rightarrow \beta = \alpha - \frac{\pi}{2}\]
\[\text{We can see that Re}(z) < 0 \text { and Im} (z) < 0 . So, z \text { lies in the third quadrant }. \]
\[ \therefore \arg(z) = \pi + \beta = \frac{\pi}{2} + \alpha\]
\[\text { Thus, z in the polar form is given by } \]
\[z = - \sec \alpha \left\{ \cos\left( \frac{\pi}{2} + \alpha \right) + i\sin \left( \frac{\pi}{2} + \alpha \right) \right\} \]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Evaluate: `[i^18 + (1/i)^25]^3`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Evaluate the following:
\[\frac{1}{i^{58}}\]
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[(1 + i)(1 + 2i)\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].
Write (i25)3 in polar form.
Write 1 − i in polar form.
Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
If z is a complex number, then
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Find a and b if `1/("a" + "ib")` = 3 – 2i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Evaluate the following : i35
Evaluate the following : i30 + i40 + i50 + i60
Show that 1 + i10 + i20 + i30 is a real number
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
State True or False for the following:
2 is not a complex number.
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`
Show that `(-1+sqrt3i)^3` is a real number.