English

Find the Real Value of X and Y, If ( 1 + I ) ( X + I Y ) = 2 − 5 I - Mathematics

Advertisements
Advertisements

Question

Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]

Solution

\[ \left( 1 + i \right)\left( x + iy \right) = 2 - 5i\]

\[ \Rightarrow x + iy + ix + i^2 y = 2 - 5i\]

\[ \Rightarrow x + iy + ix - y = 2 - 5i\]

\[ \Rightarrow \left( x - y \right) + i\left( y + x \right) = 2 - 5i\]

\[\text { Comparing both the sides }, \]

\[x - y = 2 . . . (1) \]

\[x + y = - 5 . . . (2)\]

\[\text { Adding equations (1) and (2) }, \]

\[2x = - 3\]

\[ \Rightarrow x = \frac{- 3}{2}\]

\[\text { Substituting the value of x in equation (1) }, \]

\[\frac{- 3}{2} - y = 2\]

\[ \Rightarrow y = \frac{- 3}{2} - 2\]

\[ \Rightarrow y = \frac{- 7}{2}\]

\[ \therefore x = \frac{- 3}{2} \text { and y } = \frac{- 7}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.2 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.2 | Q 2.4 | Page 31

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Express the given complex number in the form a + ib: (1 – i)4


Evaluate: `[i^18 + (1/i)^25]^3`


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Find the value of the following expression:

i5 + i10 + i15


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Express the following complex number in the standard form a + i b:

\[(1 + i)(1 + 2i)\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].


Write (i25)3 in polar form.


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


Write −1 + \[\sqrt{3}\] in polar form .


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


Find a and b if a + 2b + 2ai = 4 + 6i


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Evaluate the following : i–888 


If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.


If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×