English

If X + I Y = 3 + 5 I 7 − 6 I , Then Y = - Mathematics

Advertisements
Advertisements

Question

If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =

Options

  • 9/85

  •  −9/85

  •  53/85

  • none of these

MCQ

Solution

\[\frac{53}{85}\]

\[x + iy=\frac{3 + 5i}{7 - 6i}\]

\[\Rightarrow x+iy=\frac{3 + 5i}{7 - 6i}\times\frac{7 + 6i}{7 + 6i}\]

\[ \Rightarrow x+iy=\frac{21 + 53i + 30 i^2}{49 - 36 i^2}\]

\[ \Rightarrow x+iy=\frac{21 - 30 + 53i}{49 + 36}\]

\[ \Rightarrow x+iy=\frac{- 9}{85}+ i\frac{53}{85}\]

\[\text { On comparing both the sdes: } \]

\[y=\frac{53}{85}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.6 [Page 65]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.6 | Q 26 | Page 65

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: (1 – i)4


Evaluate: `[i^18 + (1/i)^25]^3`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Express the following complex number in the standard form a + i b:

\[(1 + i)(1 + 2i)\]


Express the following complex number in the standard form a + i b:

\[\frac{2 + 3i}{4 + 5i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


Write −1 + \[\sqrt{3}\] in polar form .


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.


Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


The principal value of the amplitude of (1 + i) is


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Find a and b if a + 2b + 2ai = 4 + 6i


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


State True or False for the following:

2 is not a complex number.


Show that `(-1+ sqrt(3)i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×