English

If Z 1 = 2 − I , Z 2 = − 2 + I , Find Im ( 1 Z 1 ¯ Z 1 ) - Mathematics

Advertisements
Advertisements

Question

If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`

Solution

\[\left( \frac{1}{z_1 z_1} \right) = \frac{1}{\left( 2 - i \right)\left( 2 + i \right)}\]

\[ = \frac{1}{2^2 - i^2}\]

\[ = \frac{1}{5}\]

\[\text { Im }\left( \frac{1}{z_1 z_1} \right) = 0 \left( \text { Since no term containing i is present } \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.2 [Page 32]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.2 | Q 6.2 | Page 32

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{2 + 3i}{4 + 5i}\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]


If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.


Solve the equation \[\left| z \right| = z + 1 + 2i\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


Write (i25)3 in polar form.


Write 1 − i in polar form.


Write −1 + \[\sqrt{3}\] in polar form .


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


The polar form of (i25)3 is


If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]


The amplitude of \[\frac{1}{i}\] is equal to


The value of \[(1 + i )^4 + (1 - i )^4\] is


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Find a and b if `1/("a" + "ib")` = 3 – 2i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Evaluate the following : i888 


Evaluate the following : i116 


Evaluate the following : i–888 


Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant

Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×