English

The Value of ( 1 + I ) 4 + ( 1 − I ) 4 is - Mathematics

Advertisements
Advertisements

Question

The value of \[(1 + i )^4 + (1 - i )^4\] is

Options

  • 8

  • 4

  • -8

  • -4

MCQ

Solution

-8

\[\text { Using } a^4 + b^4 = \left( a^2 + b^2 \right)^2 - 2 a^2 b^2 \]

\[(1 + i )^4 + (1 - i )^4 \]

\[ = \left( \left( 1 + i \right)^2 + \left( 1 - i \right)^2 \right)^2 - 2 \left( 1 + i \right)^2 \left( 1 - i \right)^2 \]

\[ = \left( 1 + i^2 + 2i + 1 + i^2 - 2i \right)^2 - 2\left( 1 + i^2 + 2i \right)\left( 1 + i^2 - 2i \right) \]

\[ = \left( 1 - 1 + 2i + 1 - 1 - 2i \right)^2 - 2\left( 1 - 1 + 2i \right)\left( 1 - 1 - 2i \right)\]

\[ = \left( 0 \right) - 2\left( 2i \right)\left( - 2i \right) \left( \because i^2 = - 1 \right)\]

\[ = 8 i^2 \]

\[ = - 8\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.6 [Page 66]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.6 | Q 36 | Page 66

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`


Find the value of the following expression:

i49 + i68 + i89 + i110


Find the value of the following expression:

i + i2 + i3 + i4


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Find the real value of x and y, if

\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


Solve the equation \[\left| z \right| = z + 1 + 2i\].


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].

Disclaimer: There is a misprinting in the question. It should be  \[\left( 1 + i\sqrt{3} \right)\]  instead of \[\left( 1 + \sqrt{3} \right)\].


The polar form of (i25)3 is


\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


Evaluate the following : i35 


Evaluate the following : i888 


Evaluate the following : i93  


Evaluate the following : i116 


Evaluate the following : i–888 


Match the statements of column A and B.

Column A Column B
(a) The value of 1 + i2 + i4 + i6 + ... i20 is (i) purely imaginary complex number
(b) The value of `i^(-1097)` is (ii) purely real complex number
(c) Conjugate of 1 + i lies in (iii) second quadrant
(d) `(1 + 2i)/(1 - i)` lies in (iv) Fourth quadrant
(e) If a, b, c ∈ R and b2 – 4ac < 0, then
the roots of the equation ax2 + bx + c = 0
are non real (complex) and
(v) may not occur in conjugate pairs
(f) If a, b, c ∈ R and b2 – 4ac > 0, and
b2 – 4ac is a perfect square, then the
roots of the equation ax2 + bx + c = 0
(vi) may occur in conjugate pairs

If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.


State True or False for the following:

2 is not a complex number.


If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×