Advertisements
Advertisements
Question
The value of \[(1 + i )^4 + (1 - i )^4\] is
Options
8
4
-8
-4
Solution
-8
\[\text { Using } a^4 + b^4 = \left( a^2 + b^2 \right)^2 - 2 a^2 b^2 \]
\[(1 + i )^4 + (1 - i )^4 \]
\[ = \left( \left( 1 + i \right)^2 + \left( 1 - i \right)^2 \right)^2 - 2 \left( 1 + i \right)^2 \left( 1 - i \right)^2 \]
\[ = \left( 1 + i^2 + 2i + 1 + i^2 - 2i \right)^2 - 2\left( 1 + i^2 + 2i \right)\left( 1 + i^2 - 2i \right) \]
\[ = \left( 1 - 1 + 2i + 1 - 1 - 2i \right)^2 - 2\left( 1 - 1 + 2i \right)\left( 1 - 1 - 2i \right)\]
\[ = \left( 0 \right) - 2\left( 2i \right)\left( - 2i \right) \left( \because i^2 = - 1 \right)\]
\[ = 8 i^2 \]
\[ = - 8\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib:
`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Find the value of the following expression:
i49 + i68 + i89 + i110
Find the value of the following expression:
i + i2 + i3 + i4
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Im `(1/(z_1overlinez_1))`
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].
Solve the equation \[\left| z \right| = z + 1 + 2i\].
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
The polar form of (i25)3 is
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i35
Evaluate the following : i888
Evaluate the following : i93
Evaluate the following : i116
Evaluate the following : i–888
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.
State True or False for the following:
2 is not a complex number.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8