हिंदी

The Value of ( 1 + I ) 4 + ( 1 − I ) 4 is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[(1 + i )^4 + (1 - i )^4\] is

विकल्प

  • 8

  • 4

  • -8

  • -4

MCQ

उत्तर

-8

\[\text { Using } a^4 + b^4 = \left( a^2 + b^2 \right)^2 - 2 a^2 b^2 \]

\[(1 + i )^4 + (1 - i )^4 \]

\[ = \left( \left( 1 + i \right)^2 + \left( 1 - i \right)^2 \right)^2 - 2 \left( 1 + i \right)^2 \left( 1 - i \right)^2 \]

\[ = \left( 1 + i^2 + 2i + 1 + i^2 - 2i \right)^2 - 2\left( 1 + i^2 + 2i \right)\left( 1 + i^2 - 2i \right) \]

\[ = \left( 1 - 1 + 2i + 1 - 1 - 2i \right)^2 - 2\left( 1 - 1 + 2i \right)\left( 1 - 1 - 2i \right)\]

\[ = \left( 0 \right) - 2\left( 2i \right)\left( - 2i \right) \left( \because i^2 = - 1 \right)\]

\[ = 8 i^2 \]

\[ = - 8\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.6 | Q 36 | पृष्ठ ६६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


Express the given complex number in the form a + ib: (1 – i)4


Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`


Find the value of the following expression:

i5 + i10 + i15


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Find the real value of x and y, if

\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]


Solve the equation \[\left| z \right| = z + 1 + 2i\].


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].


Write −1 + \[\sqrt{3}\] in polar form .


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Find a and b if a + 2b + 2ai = 4 + 6i


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Find a and b if abi = 3a − b + 12i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((1 + "i")/(1 - "i"))^2`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i93  


Evaluate the following : i403 


If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.


State True or False for the following:

2 is not a complex number.


Show that `(-1 + sqrt3 "i")^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×