हिंदी

Find the Value of the Following Expression:I5 + I10 + I15 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of the following expression:

i5 + i10 + i15

उत्तर

\[ i^5 + i^{10} + i^{15} \]

\[ = i^{4 \times 1 + 1} + i^{4 \times 2 + 2} + i^{4 \times 3 + 3} \]

\[ = \left\{ \left( i^4 \right)^1 \times i \right\} + \left\{ \left( i^4 \right)^2 \times i^2 \right\} + \left\{ \left( i^4 \right)^3 \times i^3 \right\}\]

\[ = i + i^2 + i^3 \left[ \because i^4 = 1 \right]\]

\[ = i - 1 - i \left[ \because i^2 = - 1, i^3 = - i \right] \]

\[ = - 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.1 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.1 | Q 3.4 | पृष्ठ ४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)


Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`


Evaluate the following:

(ii) i528


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Express the following complex number in the standard form a + i b:

\[\frac{2 + 3i}{4 + 5i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Write (i25)3 in polar form.


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


If z is a complex numberthen


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Find a and b if a + 2b + 2ai = 4 + 6i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((1 + "i")/(1 - "i"))^2`


Show that 1 + i10 + i20 + i30 is a real number


If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.


If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.


If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×