Advertisements
Advertisements
प्रश्न
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
उत्तर
\[\left( \frac{1 + i}{1 - i} \right) = \frac{1 + i}{1 - i} \times \frac{1 + i}{1 + i}\]
\[ = \frac{\left( 1 + i \right)^2}{1^2 - i^2}\]
\[ = \frac{1^2 + i^2 + 2i}{1 + 1} [ \because i^2 = - 1]\]
\[ = \frac{1 - 1 + 2i}{2}\]
\[ = \frac{2i}{2}\]
\[ = i . . . . (1)\]
Also,
\[\left( \frac{1 - i}{1 + i} \right) = \frac{1 - i}{1 + i} \times \frac{1 - i}{1 - i}\]
\[ = \frac{\left( 1 - i \right)^2}{1^2 - i^2}\]
\[ = \frac{1^2 + i^2 - 2i}{1 + 1} [ \because i^2 = - 1]\]
\[ = \frac{1 - 1 - 2i}{2}\]
\[ = \frac{- 2i}{2}\]
\[ = - i . . . . (2)\]
It is given that,
\[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\]
\[ \Rightarrow (i )^3 - ( - i )^3 = x + iy [\text {From (1) and (2)}]\]
\[ \Rightarrow i^3 + i^3 = x + iy\]
\[ \Rightarrow 2 i^3 = x + iy\]
\[ \Rightarrow 0 - 2i = x + iy [ \because i^3 = - i]\]
\[ \Rightarrow x = 0 \text { and } y = - 2\]
Thus, (x, y) = (0, −2).
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Find the multiplicative inverse of the following complex number:
1 − i
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
Evaluate the following:
\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
The principal value of the amplitude of (1 + i) is
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
The value of \[(1 + i )^4 + (1 - i )^4\] is
If z is a complex number, then
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
Evaluate the following : i30 + i40 + i50 + i60
If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).
If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.
State True or False for the following:
2 is not a complex number.
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.
Show that `(-1+ sqrt(3)i)^3` is a real number.
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`