हिंदी

Let z1 = 2 – i, z2 = –2 + i. Find Re(z1z2z¯1) - Mathematics

Advertisements
Advertisements

प्रश्न

Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`

योग

उत्तर

z1 = 2 – i, z2 = –2 + i

`((z_1z_2)/barz_1)  =  ((2 - i)(-2 +i))/(2 -i) = (-(2 - i)(2 -i))/(2 + i)`

= `- (2-i)^2/(2 + i)  = (- (4 + i^2 - 4i))/(2 + i)`

= `(-(4  - 1 -  4i))/((2 + i)) = -(3 - 4i)/(2 + i)`

= `-(3 - 4i)/(2 + i)  xx (2 - i)/(2 - i)`

= `(-  6  - 4i^2  + 3i  + 8i)/(4 - i^2)  =  (-  6  + 4  +  11i)/(4 + 1)`

= `(- 2 + 11i)/5  = - 2/5  + 11/5 i`

Re`((z_1z_2)/barz_1)  = - 2/5`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Miscellaneous Exercise [पृष्ठ ११३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Miscellaneous Exercise | Q 12.1 | पृष्ठ ११३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)


Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

i + i2 + i3 + i4


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.


If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


If z1 is a complex number other than −1 such that \[\left| z_1 \right| = 1\] and \[z_2 = \frac{z_1 - 1}{z_1 + 1}\] then show that the real parts of z2 is zero.


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


The argument of \[\frac{1 - i}{1 + i}\] is


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Find a and b if a + 2b + 2ai = 4 + 6i


Find a and b if (a – b) + (a + b)i = a + 5i


Find a and b if abi = 3a − b + 12i


Find a and b if `1/("a" + "ib")` = 3 – 2i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Evaluate the following : i888 


Evaluate the following : i–888 


Show that `(-1 + sqrt3 "i")^3` is a real number.


If w is a complex cube-root of unity, then prove the following

(w2 + w − 1)3 = −8


Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×