हिंदी

If a + ib = (x+i)22x2+1 prove that a2 + b2 = (x2+1)2(2x+1)2 - Mathematics

Advertisements
Advertisements

प्रश्न

If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`

योग

उत्तर

`a + ib  = (x + i)^2/(2x^2 + 1)  ......(1)` 

i के स्थान पर – i रखने से

By replacing i with –i

`a - ib  = (x + i)^2/(2x^2 + 1)  ......(2)` 

समी. (1) और (2) का गुणा करने पर

On multiplying equations (1) and (2)

`(a + ib)(a - ib)  = (x + i)^2/(2x^2 + 1) xx (x - i)^2/(2x^2 + 1)`

or `a^2  -  i^2b^2  =  [(x+i)(x - i)]^2/(2x^2  + 1)^2`

or `a^2 + b^2  = (x^2 - i^2)^2/(2x^2 + 1)^2`

or `a^2 + b^2  = (x^2  + 1)^2/(2x^2 + 1)^2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Miscellaneous Exercise [पृष्ठ ११३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Miscellaneous Exercise | Q 11 | पृष्ठ ११३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the value of the following expression:

i + i2 + i3 + i4


Express the following complex number in the standard form a + i b:

\[(1 + i)(1 + 2i)\]


Express the following complex number in the standard form a + i b:

\[(1 + 2i )^{- 3}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.


If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].


If \[\left| z - 5i \right| = \left| z + 5i \right|\] , then find the locus of z.


Write the value of \[\arg\left( z \right) + \arg\left( \bar{z} \right)\].


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].

Disclaimer: There is a misprinting in the question. It should be  \[\left( 1 + i\sqrt{3} \right)\]  instead of \[\left( 1 + \sqrt{3} \right)\].


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


The polar form of (i25)3 is


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(2 + 3i)(2 – 3i)


Evaluate the following : i30 + i40 + i50 + i60 


Show that 1 + i10 + i20 + i30 is a real number


If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Show that `(-1+ sqrt(3)i)^3` is a real number.


Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×