हिंदी

If Z = 1 ( 2 + 3 I ) 2 , than | Z | = - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]

विकल्प

  • \[\frac{1}{13}\]

  • \[\frac{1}{5}\]

  • \[\frac{1}{12}\]

  • none of these

MCQ

उत्तर

\[\frac{1}{13}\]

\[\text { Let } z = \frac{1}{\left( 2 + 3i \right)^2}\]

\[ \Rightarrow z = \frac{1}{4 + 9 i^2 + 12i} \]

\[ \Rightarrow z = \frac{1}{4 - 9 + 12i} \]

\[ \Rightarrow z = \frac{1}{- 5 + 12i}\]

\[\Rightarrow z=\frac{1}{- 5 + 12i}\times\frac{- 5 - 12i}{- 5 - 12i}\]

\[\Rightarrow z=\frac{- 5 - 12i}{25 + 144}\]

\[ \Rightarrow z=\frac{- 5}{169}-\frac{12i}{169}\]

\[\Rightarrow\left| z \right|=\sqrt{\frac{25}{{169}^2} + \frac{144}{{169}^2}}\]

\[\Rightarrow \left| z \right|=\frac{1}{\sqrt{169}}\]

\[\Rightarrow \left| z \right| = \frac{1}{13}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.6 | Q 21 | पृष्ठ ६५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)


Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Evaluate the following:

i457


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


If \[\left( 1 + i \right)z = \left( 1 - i \right) \bar{z}\],then show that \[z = - i \bar{z}\].


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .


Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.


If `(3+2i sintheta)/(1-2 i sin theta)`is a real number and 0 < θ < 2π, then θ =


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


The amplitude of \[\frac{1}{i}\] is equal to


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


Evaluate the following : i116 


Evaluate the following : `1/"i"^58`


Match the statements of column A and B.

Column A Column B
(a) The value of 1 + i2 + i4 + i6 + ... i20 is (i) purely imaginary complex number
(b) The value of `i^(-1097)` is (ii) purely real complex number
(c) Conjugate of 1 + i lies in (iii) second quadrant
(d) `(1 + 2i)/(1 - i)` lies in (iv) Fourth quadrant
(e) If a, b, c ∈ R and b2 – 4ac < 0, then
the roots of the equation ax2 + bx + c = 0
are non real (complex) and
(v) may not occur in conjugate pairs
(f) If a, b, c ∈ R and b2 – 4ac > 0, and
b2 – 4ac is a perfect square, then the
roots of the equation ax2 + bx + c = 0
(vi) may occur in conjugate pairs

If `((1 - i)/(1 + i))^100` = a + ib, then find (a, b).


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×