Advertisements
Advertisements
प्रश्न
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
उत्तर १
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
`= (2 + "i")/(3 + 6"i" - "i" - 2"i"^2)`
= `(2 + "i")/(3 + 5"i" - 2(-1))` ...[∵ i2 = – 1]
= `(2 + "i")/(5 + 5"i")`
= `(2 + "i")/(5(1 + "i"))`
= `((2 + "i")(1 - "i"))/(5(1 + "i")(1 - "i"))`
= `(2 - 2"i" + "i" - "i"^2)/(5(1 - "i"^2)`
= `(2 - "i" - (-1))/(5[1 - (-1)]` ...[∵ i2 = – 1]
= `(3- "i")/10`
∴ `(2 + "i")/((3 - "i")(1 + 2"i")) = 3/10 - 1/10"i"`
∴ a = `3/10` and b = `(-1)/10`
उत्तर २
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
`= (2 + "i")/(3 + 6"i" - "i" - 2"i"^2)`
= `(2 + "i")/(3 + 5"i" - 2(-1))` ...[∵ i2 = – 1]
= `(2 + "i")/(3 + 5"i" + 2)`
= `(2 + "i")/(5 + 5"i")`
= `((2 + "i").(5 - 5"i"))/((5 + 5"i").(5 - 5"i"))`
= `(10 - 10"i" + 5"i" - 5"i"^2)/(5^2 - 5"i"^2)`
= `(10 - 10"i" + 5"i" - 5(-1))/(5^2 - 5"i"^2)` ...[∵ i2 = – 1]
= `(10 - 10"i" + 5"i" + 5)/(5^2 - 5"i"^2)`
= `(15 - 5"i")/(25 - 25(-1))`
= `(15 - 5"i")/(25 +25)`
= `(15 - 5"i")/(50)`
= `15/50 - (5"i")/50`
= `3/10 - (1"i")/10`
∴ write in a + ib form
∴ a = `3/10` and b = `(-1)/10`
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Evaluate: `[i^18 + (1/i)^25]^3`
Evaluate the following:
i457
Evaluate the following:
(ii) i528
Find the value of the following expression:
i + i2 + i3 + i4
Find the value of the following expression:
1+ i2 + i4 + i6 + i8 + ... + i20
Express the following complex number in the standard form a + i b:
\[\frac{1}{(2 + i )^2}\]
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
Write −1 + i \[\sqrt{3}\] in polar form .
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
Write the argument of \[\left( 1 + i\sqrt{3} \right)\left( 1 + i \right)\left( \cos\theta + i\sin\theta \right)\].
Disclaimer: There is a misprinting in the question. It should be \[\left( 1 + i\sqrt{3} \right)\] instead of \[\left( 1 + \sqrt{3} \right)\].
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Find a and b if `1/("a" + "ib")` = 3 – 2i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Evaluate the following : i–888
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
Show that `(-1+ sqrt(3)i)^3` is a real number.
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`
Show that `(-1+sqrt3i)^3` is a real number.