Advertisements
Advertisements
प्रश्न
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
उत्तर
\[ x = \frac{3 - 5i}{2}\]
\[ \Rightarrow x^2 = \left( \frac{3 - 5i}{2} \right)^2 \]
\[ = \frac{9 + 25 i^2 - 30i}{4}\]
\[ = \frac{- 16 - 30i}{4}\]
\[ \Rightarrow x^3 = \frac{- 16 - 30i}{4} \times \frac{3 - 5i}{2}\]
\[ = \frac{- 48 + 80i - 90i + 150 i^2}{8}\]
\[ = \frac{- 198 - 10i}{8}\]
\[ \therefore 2 x^3 + 2 x^2 - 7x + 72 = 2\left( \frac{- 198 - 10i}{8} \right) + 2\left( \frac{- 16 - 30i}{4} \right) - 7\left( \frac{3 - 5i}{2} \right) + 72\]
\[ = \frac{- 198 - 10i - 32 - 60i - 42 + 70i + 288}{4}\]
\[ = \frac{16}{4}\]
\[ = 4\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Find the value of the following expression:
i30 + i80 + i120
Find the value of the following expression:
\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[(1 + i)(1 + 2i)\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Find the multiplicative inverse of the following complex number:
1 − i
Find the multiplicative inverse of the following complex number:
\[(1 + i\sqrt{3} )^2\]
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
If z1, z2, z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
Write 1 − i in polar form.
Write −1 + i \[\sqrt{3}\] in polar form .
Write the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
The polar form of (i25)3 is
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
The amplitude of \[\frac{1}{i}\] is equal to
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i–888
Show that 1 + i10 + i20 + i30 is a real number
If `((1 + "i"sqrt3)/(1 - "i"sqrt3))^"n"` is an integer, then n is ______.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
State True or False for the following:
The order relation is defined on the set of complex numbers.
Show that `(-1+ sqrt(3)i)^3` is a real number.
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`