हिंदी

Find the Multiplicative Inverse of the Following Complex Number:1 − I - Mathematics

Advertisements
Advertisements

प्रश्न

Find the multiplicative inverse of the following complex number:

1 − i

उत्तर

\[\text{ Let} z = 1 - i . \text { Then} , \]

\[\frac{1}{z} = \frac{1}{1 - i}\]

\[ = \frac{1}{1 - i} \times \frac{1 + i}{1 + i}\]

\[ = \frac{1 + i}{1 - i^2}\]

\[ = \frac{1}{2}\left( 1 + i \right)\]

\[ = \frac{1}{2} + \frac{1}{2}i\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.2 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.2 | Q 4.1 | पृष्ठ ३२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`


Evaluate the following:

i457


Find the value of the following expression:

i30 + i80 + i120


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{1}{(2 + i )^2}\]


Express the following complex number in the standard form a + i b:

\[(1 + i)(1 + 2i)\]


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{2 + 3i}{4 + 5i}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


If \[z_1 = 2 - i, z_2 = 1 + i,\text {  find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]


If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


Find the number of solutions of \[z^2 + \left| z \right|^2 = 0\].


Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]


Write 1 − i in polar form.


Write the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


If z is a complex numberthen


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`("i"(4 + 3"i"))/((1 - "i"))`


Evaluate the following : i888 


Evaluate the following : i403 


Evaluate the following : `1/"i"^58`


If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


Match the statements of column A and B.

Column A Column B
(a) The value of 1 + i2 + i4 + i6 + ... i20 is (i) purely imaginary complex number
(b) The value of `i^(-1097)` is (ii) purely real complex number
(c) Conjugate of 1 + i lies in (iii) second quadrant
(d) `(1 + 2i)/(1 - i)` lies in (iv) Fourth quadrant
(e) If a, b, c ∈ R and b2 – 4ac < 0, then
the roots of the equation ax2 + bx + c = 0
are non real (complex) and
(v) may not occur in conjugate pairs
(f) If a, b, c ∈ R and b2 – 4ac > 0, and
b2 – 4ac is a perfect square, then the
roots of the equation ax2 + bx + c = 0
(vi) may occur in conjugate pairs

State True or False for the following:

The order relation is defined on the set of complex numbers.


Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×