हिंदी

For Any Two Complex Numbers Z1 and Z2 and Any Two Real Numbers A, B, Find the Value of | a Z 1 − B Z 2 | 2 + | a Z 2 + B Z 1 | 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].

उत्तर

\[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2 = \left( a z_1 - b z_2 \right)\left( \bar{{a z_1 - b z_2}} \right) + \left( a z_2 + b z_1 \right)\left( \bar{{a z_2 + b z_1}} \right)\]

\[ = \left( a z_1 - b z_2 \right)\left( a \bar{{z_1}} - b \bar{{z_2}} \right) + \left( a z_2 + b z_1 \right)\left( a \bar{{z_2}} + b \bar{{z_1}} \right)\]

\[ = \left( a^2 z_1 \bar{{z_1}} - ab z_1 \bar{{z_2}} - ab z_2 \bar{{z_1}} + b^2 z_2 \bar{{z_2}} \right) + \left( a^2 z_2 \bar{{z_2}} + ab z_1 \bar{{z_2}} + ab z_2 \bar{{z_1}} + b^2 z_1 \bar{{z_1}} \right)\]

\[ = \left[ \left( a^2 + b^2 \right) z_1 \bar{{z_1}} + \left( a^2 + b^2 \right) z_2 \bar{{z_2}} \right]\]

\[ = \left[ \left( a^2 + b^2 \right)\left( z_1 \bar{{z_1}} + z_2 \bar{{z_2}} \right) \right]\]

\[ = \left[ \left( a^2 + b^2 \right)\left( \left| z_1 \right|^2 + \left| z_2 \right|^2 \right) \right]\]

Hence, 

\[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2 = \left( a^2 + b^2 \right)\left( \left| z_1 \right|^2 + \left| z_2 \right|^2 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.5 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.5 | Q 19 | पृष्ठ ६३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)


Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Express the given complex number in the form a + ib: (1 – i)4


Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`


Evaluate the following:

(ii) i528


Find the value of the following expression:

i + i2 + i3 + i4


Express the following complex number in the standard form a + i b:

\[(1 + i)(1 + 2i)\]


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


Write (i25)3 in polar form.


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


The polar form of (i25)3 is


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is


If z is a complex numberthen


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if abi = 3a − b + 12i


Find a and b if `1/("a" + "ib")` = 3 – 2i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((1 + "i")/(1 - "i"))^2`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i403 


Evaluate the following : i–888 


Show that 1 + i10 + i20 + i30 is a real number


If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.


State True or False for the following:

2 is not a complex number.


Show that `(-1+ sqrt(3)i)^3` is a real number.


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×