Advertisements
Advertisements
प्रश्न
Express the following complex in the form r(cos θ + i sin θ):
1 − sin α + i cos α
उत्तर
\[\text { Let } z = \left( 1 - \sin\alpha \right) + i\cos\alpha . \]
\[ \because \text { sine and cosine functions are periodic functions with period } 2\pi . \]
\[\text { So, let us take } \alpha \in [0, 2\pi]\]
\[\text { Now, z } = 1 - \sin\alpha + i\cos\alpha\]
\[ \Rightarrow \left| z \right| = \sqrt{\left( 1 - \sin\alpha \right)^2 + \cos^2 \alpha} = \sqrt{2 - \sin\alpha} = \sqrt{2}\sqrt{1 - \sin\alpha}\]
\[ \Rightarrow \left| z \right| = \sqrt{2}\sqrt{\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)^2} = \sqrt{2}\left| \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right|\]
\[\text { Let } \beta \text { be an acute angle given by } \tan\beta = \frac{\left| Im\left( z \right) \right|}{\left| Re\left( z \right) \right|} . \text { Then }, \]
\[\tan\beta = \frac{\left| \cos\alpha \right|}{\left| 1 - \sin\alpha \right|} = \left| \frac{\cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2}}{\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)^2} \right| = \left| \frac{\cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2} - \sin\frac{\alpha}{2}} \right|\]
\[ \Rightarrow \tan\beta = \left| \frac{1 + \tan\frac{\alpha}{2}}{1 - \tan\frac{\alpha}{2}} \right| = \left| \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right|\]
\[\text { Case I: When 0 } \leq \alpha < \frac{\pi}{2}\]
\[\text { In this case, we have }, \]
\[\cos\frac{\alpha}{2} > \sin\frac{\alpha}{2} \text { and } \frac{\pi}{4} + \frac{\alpha}{2} \in [\frac{\pi}{4}, \frac{\pi}{2})\]
\[ \Rightarrow \left| z \right| = \sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)\]
\[\text { and } \tan\beta = \left| \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right| = \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right)\]
\[ \Rightarrow \beta = \frac{\pi}{4} + \frac{\alpha}{2}\]
\[\text { Clearly, z lies in the first quadrant . Therefore }, \arg\left( z \right) = \frac{\pi}{4} + \frac{\alpha}{2}\]
\[\text { Hence, the polar form of z is } \]
\[\sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)\left\{ \cos\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) + i\sin\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right\}\]
\[\text { Case II: When} \frac{\pi}{2} < \alpha < \frac{3\pi}{2}\]
\[\text { In this case, we have,}\]
\[\cos\frac{\alpha}{2} < \sin\frac{\alpha}{2} \text { and } \frac{\pi}{4} + \frac{\alpha}{2} \in \left( \frac{\pi}{2}, \pi \right)\]
\[ \Rightarrow \left| z \right| = \sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right) = - \sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)\]
\[\text { and } \tan\beta = \left| \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right| = - \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) = \tan\left\{ \pi - \left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right\} = \tan\left( \frac{3\pi}{4} - \frac{\alpha}{2} \right)\]
\[ \Rightarrow \beta = \frac{3\pi}{4} - \frac{\alpha}{2}\]
\[\text { Clearly, z lies in the fourth quadrant . Therefore,} \arg\left( z \right) = - \beta = - \left( \frac{3\pi}{4} - \frac{\alpha}{2} \right) = \frac{\alpha}{2} - \frac{3\pi}{4}\]
\[\text { Hence, the polar form of z is} \]
\[ - \sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)\left\{ \cos\left( \frac{\alpha}{2} - \frac{3\pi}{4} \right) + i\sin\left( \frac{\alpha}{2} - \frac{3\pi}{4} \right) \right\}\]
\[\text { Case III: When } \frac{3\pi}{2} < \alpha < 2\pi\]
\[\text { In this case, we have, }\]
\[\cos\frac{\alpha}{2} < \sin\frac{\alpha}{2} and \frac{\pi}{4} + \frac{\alpha}{2} \in \left( \pi, \frac{5\pi}{4} \right)\]
\[ \Rightarrow \left| z \right| = \sqrt{2}\left| \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right| = - \sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)\]
\[\text { and } \tan\beta = \left| \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right| = \tan\left( \frac{\pi}{4} + \frac{\alpha}{2} \right) = - \tan\left\{ \pi - \left( \frac{\pi}{4} + \frac{\alpha}{2} \right) \right\} = \tan\left( \frac{\alpha}{2} - \frac{3\pi}{4} \right)\]
\[ \Rightarrow \beta = \frac{\alpha}{2} - \frac{3\pi}{4}\]
\[\text { Clearly, z lies in the first quadrant . Therefore,} \arg\left( z \right) = \beta = \frac{\alpha}{2} - \frac{3\pi}{4}\]
\[\text { Hence, the polar form of z is } \]
\[ - \sqrt{2}\left( \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2} \right)\left\{ \cos\left( \frac{\alpha}{2} - \frac{3\pi}{4} \right) + i\sin\left( \frac{\alpha}{2} - \frac{3\pi}{4} \right) \right\}\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i–39
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
Find the real value of x and y, if
\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\] find x + y.
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Express the following complex in the form r(cos θ + i sin θ):
tan α − i
If π < θ < 2π and z = 1 + cos θ + i sin θ, then write the value of \[\left| z \right|\] .
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
Write −1 + i \[\sqrt{3}\] in polar form .
Write the argument of −i.
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
If \[z = a + ib\] lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if
If \[f\left( z \right) = \frac{7 - z}{1 - z^2}\] , where \[z = 1 + 2i\] then \[\left| f\left( z \right) \right|\] is
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
Find a and b if a + 2b + 2ai = 4 + 6i
Find a and b if (a – b) + (a + b)i = a + 5i
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Find a and b if abi = 3a − b + 12i
Find a and b if `1/("a" + "ib")` = 3 – 2i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Evaluate the following : i35
Evaluate the following : i93
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
Show that `(-1 + sqrt3 "i")^3` is a real number.