हिंदी

Find a and b if 1a+ib = 3 – 2i - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find a and b if `1/("a" + "ib")` = 3 – 2i

योग

उत्तर

`1/("a" + "ib")` = 3 – 2i

∴ a + ib = `1/(3 - 2"i")` 

∴ a + ib = `1/(3 - 2"i") xx (3 + 2"i")/(3 + 2"i")`

∴ a + ib = `(3 + 2"i")/(9 - 4"i"^2)`

∴ a + ib = `(3 + 2"i")/(9 + 4)`   ...[∵ i2 = – 1]

∴ a + ib = `(3 + 2"i")/13 = 3/13 + 2/13 "i"`

Equating the real and imaginary parts separately, we get,

a = `3/13`, b = `2/13`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Complex Numbers - Exercise 1.1 [पृष्ठ ६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 1 Complex Numbers
Exercise 1.1 | Q 3. (v) | पृष्ठ ६

संबंधित प्रश्न

Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


Evaluate: `[i^18 + (1/i)^25]^3`


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Evaluate the following:

 \[\frac{1}{i^{58}}\]


Show that 1 + i10 + i20 + i30 is a real number.


Express the following complex number in the standard form a + i b:

\[\frac{1 - i}{1 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].


Evaluate the following:

\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text {  when } x = 3 + 2i\]


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


The polar form of (i25)3 is


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]


If \[x + iy = \frac{3 + 5i}{7 - 6i},\]  then y =


The amplitude of \[\frac{1}{i}\] is equal to


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + 2i)(– 2 + i)


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Evaluate the following : i403 


Answer the following:

Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.


If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.


State True or False for the following:

The order relation is defined on the set of complex numbers.


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×