Advertisements
Advertisements
प्रश्न
Find a and b if `1/("a" + "ib")` = 3 – 2i
उत्तर
`1/("a" + "ib")` = 3 – 2i
∴ a + ib = `1/(3 - 2"i")`
∴ a + ib = `1/(3 - 2"i") xx (3 + 2"i")/(3 + 2"i")`
∴ a + ib = `(3 + 2"i")/(9 - 4"i"^2)`
∴ a + ib = `(3 + 2"i")/(9 + 4)` ...[∵ i2 = – 1]
∴ a + ib = `(3 + 2"i")/13 = 3/13 + 2/13 "i"`
Equating the real and imaginary parts separately, we get,
a = `3/13`, b = `2/13`
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Evaluate: `[i^18 + (1/i)^25]^3`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Evaluate the following:
\[\frac{1}{i^{58}}\]
Show that 1 + i10 + i20 + i30 is a real number.
Express the following complex number in the standard form a + i b:
\[\frac{1 - i}{1 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
The polar form of (i25)3 is
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
The amplitude of \[\frac{1}{i}\] is equal to
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Evaluate the following : i403
Answer the following:
Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
State True or False for the following:
The order relation is defined on the set of complex numbers.
The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.