Advertisements
Advertisements
प्रश्न
If a = cos θ + i sin θ, then \[\frac{1 + a}{1 - a} =\]
विकल्प
\[\cot\frac{\theta}{2}\]
cot θ
\[i \cot\frac{\theta}{2}\]
\[i \tan\frac{\theta}{2}\]
उत्तर
\[i \cot\frac{\theta}{2}\]
\[a = \cos\theta + i\sin\theta \left( \text { given } \right)\]
\[ \Rightarrow \frac{1 + a}{1 - a} = \frac{1 + \cos\theta + i\sin\theta}{1 - \cos\theta - i\sin\theta}\]
\[ \Rightarrow \frac{1 + a}{1 - a} = \frac{1 + \cos\theta + i\sin\theta}{1 - \cos\theta - i\sin\theta} \times \frac{1 - \cos\theta + i\sin\theta}{1 - \cos\theta + i\sin\theta}\]
\[\Rightarrow \frac{1 + a}{1 - a}=\frac{\left( 1 + i\sin\theta \right)^2 - \cos^2 \theta}{\left( 1 - \cos\theta \right)^2 - \left( i\sin\theta \right)^2}\]
\[\Rightarrow \frac{1 + a}{1 - a}=\frac{1 - \sin^2 \theta + 2i\sin\theta - \cos^2 \theta}{1 + \cos^2 \theta - 2\cos\theta + \sin^2 \theta}\]
\[\Rightarrow \frac{1 + a}{1 - a}=\frac{1 - \left( \sin^2 \theta + \cos^2 \theta \right) + 2i\sin\theta}{1 + \left( \sin^2 \theta + \cos^2 \theta \right) - 2\cos\theta}\]
\[\Rightarrow \frac{1 + a}{1 - a}=\frac{2i\sin\theta}{2(1 - \cos\theta)}\]
\[\Rightarrow $\frac{1 + a}{1 - a} =\frac{2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2 \sin^2 \frac{\theta}{2}}\]
\[\Rightarrow \frac{1 + a}{1 - a}=\frac{i\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}\]
\[\Rightarrow \frac{1 + a}{1 - a}=i \cot\frac{\theta}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `[i^18 + (1/i)^25]^3`
Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[(1 + i)(1 + 2i)\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
Find the real value of x and y, if
\[(3x - 2iy)(2 + i )^2 = 10(1 + i)\]
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
Solve the system of equations \[\text { Re }\left( z^2 \right) = 0, \left| z \right| = 2\].
Write (i25)3 in polar form.
Write 1 − i in polar form.
Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
If z is a non-zero complex number, then \[\left| \frac{\left| z \right|^2}{zz} \right|\] is equal to
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
Which of the following is correct for any two complex numbers z1 and z2?
If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on
Find a and b if abi = 3a − b + 12i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
Evaluate the following : i35
Answer the following:
Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.
Show that `(-1 + sqrt3 "i")^3` is a real number.