हिंदी

If z1 and z2 both satisfy z+z¯=2|z-1| arg(z1-z2)=π4, then find ImIm(z1+z2). - Mathematics

Advertisements
Advertisements

प्रश्न

If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.

योग

उत्तर

Let z = x + iy, z1 = x1 + iy1 and z2 = x2 + iy2 .

Then `z + barz = 2|z - 1|`

⇒ (x + iy) + (x – iy) = `2|x - 1 + "i"y|`

⇒ 2x = 1 + y2    .......(1)

Since z1 and z2 both satisfy (1), we have

`2x_1 = 1 + y_1^2 .....` and `2x_2 = 1 + y_2^2`

⇒ `2(x_1 - x_2) = (y_1 + y_2)(y_1 - y_2)`

⇒ 2 = `(y_1 + y_2) ((y_1 - y_2)/(x_1 - x_2))`  ......(2)

Again `z_1 - "z"_2 = (x_1 - x_2) + "i"(y_"i" - y_2)`

Therefore, tanθ = `(y_1 - y_2)/(x_1 - x_2)`, where θ = arg`("z"_1 - "z"_2)`

⇒ `tan  pi/4 = (y_1 - y_2)/(x_1 - x_2)`  ......`("Since"  theta = pi/4)`

i.e., 1 = `(y_1 - y_2)/(x_1 - x_2)`

From (2), We get 2 = y1 + y2 i.e., `"Im" ("z"_1 + "z"_2)` = 2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Solved Examples [पृष्ठ ८३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Solved Examples | Q 15 | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Evaluate the following:

i457


Evaluate the following:

(ii) i528


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 - i )^3}{1 - i^3}\]


Express the following complex number in the standard form a + i b:

\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]


Find the multiplicative inverse of the following complex number:

1 − i


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Im `(1/(z_1overlinez_1))`


Find the least positive integral value of n for which  \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.


Evaluate the following:

\[2 x^4 + 5 x^3 + 7 x^2 - x + 41, \text { when } x = - 2 - \sqrt{3}i\]


Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α


If n ∈ \[\mathbb{N}\] then find the value of \[i^n + i^{n + 1} + i^{n + 2} + i^{n + 3}\] .


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.


The principal value of the amplitude of (1 + i) is


\[\text { If } z = \frac{1}{(2 + 3i )^2}, \text { than } \left| z \right| =\]


\[\text { If  }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


Find a and b if a + 2b + 2ai = 4 + 6i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((1 + "i")/(1 - "i"))^2`


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Show that `(-1 + sqrt(3)"i")^3` is a real number


Evaluate the following : i–888 


Match the statements of column A and B.

Column A Column B
(a) The value of 1 + i2 + i4 + i6 + ... i20 is (i) purely imaginary complex number
(b) The value of `i^(-1097)` is (ii) purely real complex number
(c) Conjugate of 1 + i lies in (iii) second quadrant
(d) `(1 + 2i)/(1 - i)` lies in (iv) Fourth quadrant
(e) If a, b, c ∈ R and b2 – 4ac < 0, then
the roots of the equation ax2 + bx + c = 0
are non real (complex) and
(v) may not occur in conjugate pairs
(f) If a, b, c ∈ R and b2 – 4ac > 0, and
b2 – 4ac is a perfect square, then the
roots of the equation ax2 + bx + c = 0
(vi) may occur in conjugate pairs

State True or False for the following:

2 is not a complex number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×