English

If z1 and z2 both satisfy z+z¯=2|z-1| arg(z1-z2)=π4, then find ImIm(z1+z2). - Mathematics

Advertisements
Advertisements

Question

If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.

Sum

Solution

Let z = x + iy, z1 = x1 + iy1 and z2 = x2 + iy2 .

Then `z + barz = 2|z - 1|`

⇒ (x + iy) + (x – iy) = `2|x - 1 + "i"y|`

⇒ 2x = 1 + y2    .......(1)

Since z1 and z2 both satisfy (1), we have

`2x_1 = 1 + y_1^2 .....` and `2x_2 = 1 + y_2^2`

⇒ `2(x_1 - x_2) = (y_1 + y_2)(y_1 - y_2)`

⇒ 2 = `(y_1 + y_2) ((y_1 - y_2)/(x_1 - x_2))`  ......(2)

Again `z_1 - "z"_2 = (x_1 - x_2) + "i"(y_"i" - y_2)`

Therefore, tanθ = `(y_1 - y_2)/(x_1 - x_2)`, where θ = arg`("z"_1 - "z"_2)`

⇒ `tan  pi/4 = (y_1 - y_2)/(x_1 - x_2)`  ......`("Since"  theta = pi/4)`

i.e., 1 = `(y_1 - y_2)/(x_1 - x_2)`

From (2), We get 2 = y1 + y2 i.e., `"Im" ("z"_1 + "z"_2)` = 2

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Solved Examples [Page 83]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Solved Examples | Q 15 | Page 83

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Express the given complex number in the form a + ib: `(1/3 + 3i)^3`


Evaluate the following:

(ii) i528


Evaluate the following:

\[i^{49} + i^{68} + i^{89} + i^{110}\]


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

i + i2 + i3 + i4


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Find the multiplicative inverse of the following complex number:

1 − i


If \[z_1 = 2 - i, z_2 = - 2 + i,\] find 

Re \[\left( \frac{z_1 z_2}{z_1} \right)\]


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (xy).


If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]


Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.


If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].


Write 1 − i in polar form.


If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then


The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is


\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals


Find a and b if a + 2b + 2ai = 4 + 6i


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

(1 + i)(1 − i)−1 


Evaluate the following : `1/"i"^58`


Evaluate the following : i30 + i40 + i50 + i60 


State True or False for the following:

The order relation is defined on the set of complex numbers.


Match the statements of Column A and Column B.

Column A Column B
(a) The polar form of `i + sqrt(3)` is  (i) Perpendicular bisector of
segment joining (–2, 0)
and (2, 0).
(b) The amplitude of `-1 + sqrt(-3)` is  (ii) On or outside the circle
having centre at (0, –4)
and radius 3.
(c) If |z + 2| = |z − 2|, then locus of z is (iii) `(2pi)/3`
(d) If |z + 2i| = |z − 2i|, then locus of z is (iv) Perpendicular bisector of
segment joining (0, –2) and (0, 2).
(e) Region represented by |z + 4i| ≥ 3 is  (v) `2(cos  pi/6 + i sin  pi/6)`
(f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having
centre (–4, 0) and radius 3 units.
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in (vii) First quadrant
(h) Reciprocal of 1 – i lies in (viii) Third quadrant

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×