Advertisements
Advertisements
Question
If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.
Solution
Let z = x + iy, z1 = x1 + iy1 and z2 = x2 + iy2 .
Then `z + barz = 2|z - 1|`
⇒ (x + iy) + (x – iy) = `2|x - 1 + "i"y|`
⇒ 2x = 1 + y2 .......(1)
Since z1 and z2 both satisfy (1), we have
`2x_1 = 1 + y_1^2 .....` and `2x_2 = 1 + y_2^2`
⇒ `2(x_1 - x_2) = (y_1 + y_2)(y_1 - y_2)`
⇒ 2 = `(y_1 + y_2) ((y_1 - y_2)/(x_1 - x_2))` ......(2)
Again `z_1 - "z"_2 = (x_1 - x_2) + "i"(y_"i" - y_2)`
Therefore, tanθ = `(y_1 - y_2)/(x_1 - x_2)`, where θ = arg`("z"_1 - "z"_2)`
⇒ `tan pi/4 = (y_1 - y_2)/(x_1 - x_2)` ......`("Since" theta = pi/4)`
i.e., 1 = `(y_1 - y_2)/(x_1 - x_2)`
From (2), We get 2 = y1 + y2 i.e., `"Im" ("z"_1 + "z"_2)` = 2
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Evaluate the following:
(ii) i528
Evaluate the following:
\[i^{49} + i^{68} + i^{89} + i^{110}\]
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
i + i2 + i3 + i4
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Find the multiplicative inverse of the following complex number:
1 − i
If \[z_1 = 2 - i, z_2 = - 2 + i,\] find
Re \[\left( \frac{z_1 z_2}{z_1} \right)\]
Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\] is purely real.
If \[\left( \frac{1 + i}{1 - i} \right)^3 - \left( \frac{1 - i}{1 + i} \right)^3 = x + iy\] find (x, y).
If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
Write 1 − i in polar form.
If\[z = \cos\frac{\pi}{4} + i \sin\frac{\pi}{6}\], then
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
Find a and b if a + 2b + 2ai = 4 + 6i
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Evaluate the following : `1/"i"^58`
Evaluate the following : i30 + i40 + i50 + i60
State True or False for the following:
The order relation is defined on the set of complex numbers.
Match the statements of Column A and Column B.
Column A | Column B |
(a) The polar form of `i + sqrt(3)` is | (i) Perpendicular bisector of segment joining (–2, 0) and (2, 0). |
(b) The amplitude of `-1 + sqrt(-3)` is | (ii) On or outside the circle having centre at (0, –4) and radius 3. |
(c) If |z + 2| = |z − 2|, then locus of z is | (iii) `(2pi)/3` |
(d) If |z + 2i| = |z − 2i|, then locus of z is | (iv) Perpendicular bisector of segment joining (0, –2) and (0, 2). |
(e) Region represented by |z + 4i| ≥ 3 is | (v) `2(cos pi/6 + i sin pi/6)` |
(f) Region represented by |z + 4| ≤ 3 is | (vi) On or inside the circle having centre (–4, 0) and radius 3 units. |
(g) Conjugate of `(1 + 2i)/(1 - i)` lies in | (vii) First quadrant |
(h) Reciprocal of 1 – i lies in | (viii) Third quadrant |