Advertisements
Advertisements
Question
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
Options
i
-1
\[-\]i
4
Solution
\[-\]i
\[\text { Let z } = \frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\]
\[ \Rightarrow z = \frac{1 + 2i - 3}{1 - 2i - 3}\]
\[ \Rightarrow z=\frac{- 2 + 2i}{- 2 - 2i}\times$\frac{- 2 + 2i}{- 2 + 2i}\]
\[ \Rightarrow z=\frac{\left( - 2 + 2i \right)^2}{\left( - 2 \right)^2 - \left( 2i \right)^2}\]
\[ \Rightarrow z=\frac{4 + 4 i^2 - 8i}{4 + 4}\]
\[ \Rightarrow z =\frac{4 - 4 - 8i}{8}\]
\[ \Rightarrow z=\frac{- 8i}{8}\]
\[ \Rightarrow z =-i\]
APPEARS IN
RELATED QUESTIONS
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
Express the given complex number in the form a + ib: i9 + i19
Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)
Express the given complex number in the form a + ib: (1 – i)4
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`
Evaluate the following:
i457
Evaluate the following:
(ii) i528
Evaluate the following:
\[i^{37} + \frac{1}{i^{67}}\].
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of the following expression:
i49 + i68 + i89 + i110
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
If \[z_1 = 2 - i, z_2 = 1 + i,\text { find } \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|\]
Evaluate the following:
\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].
Write 1 − i in polar form.
Write the argument of −i.
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].
If \[\left| z \right| = 2 \text { and } \arg\left( z \right) = \frac{\pi}{4}\],find z.
If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is
The argument of \[\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\] is
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
Find a and b if abi = 3a − b + 12i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Show that `(-1 + sqrt(3)"i")^3` is a real number
Evaluate the following : i116
Evaluate the following : i30 + i40 + i50 + i60
Show that 1 + i10 + i20 + i30 is a real number
If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.
Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`