हिंदी

1 + 2 I + 3 I 2 1 − 2 I + 3 I 2 Equals - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals

विकल्प

  • i

  • -1

  • \[-\]i

  • 4

MCQ

उत्तर

\[-\]i

\[\text { Let z } = \frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\]

\[ \Rightarrow z = \frac{1 + 2i - 3}{1 - 2i - 3}\]

\[ \Rightarrow z=\frac{- 2 + 2i}{- 2 - 2i}\times$\frac{- 2 + 2i}{- 2 + 2i}\]

\[ \Rightarrow z=\frac{\left( - 2 + 2i \right)^2}{\left( - 2 \right)^2 - \left( 2i \right)^2}\]

\[ \Rightarrow z=\frac{4 + 4 i^2 - 8i}{4 + 4}\]

\[ \Rightarrow z =\frac{4 - 4 - 8i}{8}\]

\[ \Rightarrow z=\frac{- 8i}{8}\]

\[ \Rightarrow z =-i\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.6 | Q 34 | पृष्ठ ६६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: i9 + i19


Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: (1 – i)4


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Evaluate the following:

\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

i49 + i68 + i89 + i110


Find the value of the following expression:

i + i2 + i3 + i4


Express the following complex number in the standard form a + i b:

\[\frac{3 + 2i}{- 2 + i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(2 + i )^3}{2 + 3i}\]


Express the following complex number in the standard form a + i b:

\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.

 

For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


Solve the equation \[\left| z \right| = z + 1 + 2i\].


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


Express the following complex in the form r(cos θ + i sin θ):

 tan α − i


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


Express the following complex in the form r(cos θ + i sin θ):

\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


Write the argument of −i.


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


Find the real value of a for which \[3 i^3 - 2a i^2 + (1 - a)i + 5\] is real.


If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =


The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is 


A real value of x satisfies the equation  \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


Find a and b if a + 2b + 2ai = 4 + 6i


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`


Evaluate the following : `1/"i"^58`


Evaluate the following : i–888 


Evaluate the following : i30 + i40 + i50 + i60 


If a = cosθ + isinθ, find the value of `(1 + "a")/(1 - "a")`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×