हिंदी

Evaluate the following : i–888 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : i–888 

योग

उत्तर

We know that, i2 = – 1, i3 = – i, i4 = 1

i–888 = (i4)–222

= (1)–222

= `1/(1)^222`

= 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Complex Numbers - Exercise 1.1 [पृष्ठ ६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 1 Complex Numbers
Exercise 1.1 | Q 7. (vii) | पृष्ठ ६

संबंधित प्रश्न

Express the given complex number in the form a + ib:

`[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`


Evaluate: `[i^18 + (1/i)^25]^3`


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Evaluate the following:

i457


Evaluate the following:

 \[\frac{1}{i^{58}}\]


Evaluate the following:

\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of the following expression:

i5 + i10 + i15


Find the value of the following expression:

(1 + i)6 + (1 − i)3


Express the following complex number in the standard form a + i b:

\[\frac{2 + 3i}{4 + 5i}\]


Express the following complex number in the standard form a + i b:

\[\left( \frac{1}{1 - 4i} - \frac{2}{1 + i} \right)\left( \frac{3 - 4i}{5 + i} \right)\]


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


Find the real values of θ for which the complex number \[\frac{1 + i cos\theta}{1 - 2i cos\theta}\]  is purely real.


Evaluate the following:

\[2 x^3 + 2 x^2 - 7x + 72, \text { when } x = \frac{3 - 5i}{2}\]


Evaluate the following:

\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


For a positive integer n, find the value of \[(1 - i )^n \left( 1 - \frac{1}{i} \right)^n\].


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


If z1z2z3 are complex numbers such that \[\left| z_1 \right| = \left| z_2 \right| = \left| z_3 \right| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1\] then find the value of \[\left| z_1 + z_2 + z_3 \right|\] .


Write (i25)3 in polar form.


Express the following complex in the form r(cos θ + i sin θ):

1 − sin α + i cos α


Write 1 − i in polar form.


If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].


If i2 = −1, then the sum i + i2 + i3 +... upto 1000 terms is equal to


If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal


If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then


The value of \[(1 + i )^4 + (1 - i )^4\] is


If z is a complex numberthen


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if a + 2b + 2ai = 4 + 6i


Find a and b if `1/("a" + "ib")` = 3 – 2i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`((2 + "i"))/((3 - "i")(1 + 2"i"))`


Evaluate the following : i116 


If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×