हिंदी

Evaluate the following : i30 + i40 + i50 + i60 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : i30 + i40 + i50 + i60 

योग

उत्तर

i30 + i40 + i50 + i60 

= (i2)15 + (i2)20 + (i2)25 + (i2)30

= (– 1)15 + (– 1)20 + (– 1)25 + (– 1)30

= – 1 + 1 – 1 + 1

= 0.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Complex Numbers - Exercise 1.1 [पृष्ठ ६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 1 Complex Numbers
Exercise 1.1 | Q 7. (viii) | पृष्ठ ६

संबंधित प्रश्न

Express the given complex number in the form a + ib: i–39


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Find the value of the following expression:

i30 + i80 + i120


Find the value of the following expression:

i5 + i10 + i15


Find the value of the following expression:

1+ i2 + i4 + i6 + i8 + ... + i20


Express the following complex number in the standard form a + i b:

\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]


Find the multiplicative inverse of the following complex number:

\[(1 + i\sqrt{3} )^2\]


If \[\frac{\left( 1 + i \right)^2}{2 - i} = x + iy\]  find x + y.


If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


Evaluate the following:

\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]


Solve the equation \[\left| z \right| = z + 1 + 2i\].


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


Find the principal argument of \[\left( 1 + i\sqrt{3} \right)^2\] .


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.


For any two complex numbers z1 and z2 and any two real numbers a, b, find the value of \[\left| a z_1 - b z_2 \right|^2 + \left| a z_2 + b z_1 \right|^2\].


The polar form of (i25)3 is


The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.

 

If (x + iy)1/3 = a + ib, then \[\frac{x}{a} + \frac{y}{b} =\]


\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]


The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is 


If z is a complex numberthen


Which of the following is correct for any two complex numbers z1 and z2?

 


Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`


Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:

`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`


Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`


Evaluate the following : i888 


Evaluate the following : i93  


Evaluate the following : i403 


Evaluate the following : i–888 


Show that 1 + i10 + i20 + i30 is a real number


Match the statements of column A and B.

Column A Column B
(a) The value of 1 + i2 + i4 + i6 + ... i20 is (i) purely imaginary complex number
(b) The value of `i^(-1097)` is (ii) purely real complex number
(c) Conjugate of 1 + i lies in (iii) second quadrant
(d) `(1 + 2i)/(1 - i)` lies in (iv) Fourth quadrant
(e) If a, b, c ∈ R and b2 – 4ac < 0, then
the roots of the equation ax2 + bx + c = 0
are non real (complex) and
(v) may not occur in conjugate pairs
(f) If a, b, c ∈ R and b2 – 4ac > 0, and
b2 – 4ac is a perfect square, then the
roots of the equation ax2 + bx + c = 0
(vi) may occur in conjugate pairs

State True or False for the following:

The order relation is defined on the set of complex numbers.


State True or False for the following:

2 is not a complex number.


The real value of θ for which the expression `(1 + i cos theta)/(1 - 2i cos theta)` is a real number is ______.


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×