Advertisements
Advertisements
प्रश्न
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
विकल्प
16
8
4
2
उत्तर
\[8\]
\[\text { Let } z = \left( \frac{2i}{1 + i} \right)\]
\[ \Rightarrow z = \frac{2i}{1 + i} \times \frac{1 - i}{1 - i}\]
\[ \Rightarrow z = \frac{2i\left( 1 - i \right)}{1 - i^2}\]
\[ \Rightarrow z = \frac{2i\left( 1 - i \right)}{1 + 1} \left[ \because i^2 = - 1 \right]\]
\[ \Rightarrow z = \frac{2i\left( 1 - i \right)}{2}\]
\[ \Rightarrow z = i - i^2 \]
\[ \Rightarrow z = i + 1\]
\[\text { Now }, z^n = \left( 1 + i \right)^n \]
\[\text { For } n = 2, \]
\[ z^2 = \left( 1 + i \right)^2 \]
\[ = 1 + i^2 + 2i\]
\[ = 1 - 1 + 2i\]
\[ = 2i . . . (1) \]
\[\text { Since this is not a positive integer }, \]
\[\text { For } n = 4, \]
\[ z^4 = \left( 1 + i \right)^4 \]
\[ = \left[ \left( 1 + i \right)^2 \right]^2 \]
\[ = \left( 2i \right)^2 \left[ \text { Using } (1) \right] \]
\[ = 4 i^2 \]
\[ = - 4 . . . (2)\]
\[\text { This is a negative integer }. \]
\[\text { For } n = 8, \]
\[ z^8 = \left( 1 + i \right)^8 \]
\[ = \left[ \left( 1 + i \right)^4 \right]^2 \]
\[ = \left( - 4 \right)^2 \left[ \text { Using } (2) \right]\]
\[ = 16\]
\[\text { This is a positive integer } . \]
\[\text { Thus }, z = \left( \frac{2i}{1 + i} \right)^n\text { is positive for } n = 8 . \]
\[\text { Therefore, 8 is the least positive integer such that } \left( \frac{2i}{1 + i} \right)^n\text { is a positive integer } .\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Evaluate the following:
i457
Evaluate the following:
\[i^{37} + \frac{1}{i^{67}}\].
Evaluate the following:
\[( i^{77} + i^{70} + i^{87} + i^{414} )^3\]
Find the value of the following expression:
(1 + i)6 + (1 − i)3
Express the following complex number in the standard form a + i b:
\[(1 + i)(1 + 2i)\]
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Express the following complex number in the standard form a + i b:
\[\frac{5 + \sqrt{2}i}{1 - 2\sqrt{i}}\]
Find the real value of x and y, if
\[(x + iy)(2 - 3i) = 4 + i\]
Find the multiplicative inverse of the following complex number:
1 − i
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
Find the least positive integral value of n for which \[\left( \frac{1 + i}{1 - i} \right)^n\] is real.
Find the smallest positive integer value of m for which \[\frac{(1 + i )^n}{(1 - i )^{n - 2}}\] is a real number.
If \[a = \cos\theta + i\sin\theta\], find the value of \[\frac{1 + a}{1 - a}\].
If \[\frac{z - 1}{z + 1}\] is purely imaginary number (\[z \neq - 1\]), find the value of \[\left| z \right|\].
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
Express \[\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\] in polar form.
Write the value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\] .
Find z, if \[\left| z \right| = 4 \text { and }\arg(z) = \frac{5\pi}{6} .\]
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
\[\text { If } z = \frac{1}{(1 - i)(2 + 3i)}, \text { than } \left| z \right| =\]
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
Which of the following is correct for any two complex numbers z1 and z2?
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Evaluate the following : i30 + i40 + i50 + i60
Match the statements of column A and B.
Column A | Column B |
(a) The value of 1 + i2 + i4 + i6 + ... i20 is | (i) purely imaginary complex number |
(b) The value of `i^(-1097)` is | (ii) purely real complex number |
(c) Conjugate of 1 + i lies in | (iii) second quadrant |
(d) `(1 + 2i)/(1 - i)` lies in | (iv) Fourth quadrant |
(e) If a, b, c ∈ R and b2 – 4ac < 0, then the roots of the equation ax2 + bx + c = 0 are non real (complex) and |
(v) may not occur in conjugate pairs |
(f) If a, b, c ∈ R and b2 – 4ac > 0, and b2 – 4ac is a perfect square, then the roots of the equation ax2 + bx + c = 0 |
(vi) may occur in conjugate pairs |
State True or False for the following:
2 is not a complex number.
Show that `(-1 + sqrt3 "i")^3` is a real number.