Advertisements
Advertisements
प्रश्न
If θ is the amplitude of \[\frac{a + ib}{a - ib}\] , than tan θ =
विकल्प
\[\frac{2a}{a^2 + b^2}\]
\[\frac{2ab}{a^2 - b^2}\]
\[\frac{a^2 - b^2}{a^2 + b^2}\]
none of these
उत्तर
\[\frac{2ab}{a^2 - b^2}\]
\[z = \frac{a + ib}{a - ib} \times \frac{a + ib}{a + ib}\]
\[ \Rightarrow z = \frac{a^2 + i^2 b^2 + 2abi}{a^2 - i^2 b^2}\]
\[ \Rightarrow z = \frac{a^2 - b^2 + 2abi}{a^2 + b^2}\]
\[ \Rightarrow z = \frac{a^2 - b^2}{a^2 + b^2} + i\frac{2ab}{a^2 + b^2}\]
\[ \Rightarrow \text { Re }\left( z \right) = \frac{a^2 - b^2}{a^2 + b^2}, \text { Im }\left( z \right) = \frac{2ab}{a^2 + b^2}\]
\[\tan \alpha = \left| \frac{Im\left( z \right)}{Re\left( z \right)} \right|\]
\[ = \frac{2ab}{a^2 - b^2}\]
\[\alpha = \tan^{- 1} \left( \frac{2ab}{a^2 - b^2} \right)\]
\[\text { Since, z lies in the first quadrant . Therefore, } \]
\[\arg (z) = \alpha = \tan^{- 1} \left( \frac{2ab}{a^2 - b^2} \right)\]
\[\tan \theta = \frac{2ab}{a^2 - b^2}\]
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: i–39
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
If a + ib = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`
Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`
Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`
Show that 1 + i10 + i20 + i30 is a real number.
Express the following complex number in the standard form a + i b:
\[\frac{3 + 2i}{- 2 + i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(2 + i )^3}{2 + 3i}\]
Express the following complex number in the standard form a + i b:
\[\frac{2 + 3i}{4 + 5i}\]
Express the following complex number in the standard form a + i b:
\[\frac{(1 - i )^3}{1 - i^3}\]
Express the following complex number in the standard form a + i b:
\[(1 + 2i )^{- 3}\]
Express the following complex number in the standard form a + i b:
\[\frac{3 - 4i}{(4 - 2i)(1 + i)}\]
Evaluate the following:
\[x^4 + 4 x^3 + 6 x^2 + 4x + 9, \text { when } x = - 1 + i\sqrt{2}\]
Evaluate the following:
\[x^6 + x^4 + x^2 + 1, \text { when }x = \frac{1 + i}{\sqrt{2}}\]
Write (i25)3 in polar form.
Express the following complex in the form r(cos θ + i sin θ):
1 + i tan α
Express the following complex in the form r(cos θ + i sin θ):
\[\frac{1 - i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}\]
Write the argument of −i.
If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of \[x^2 + y^2\].
Write the sum of the series \[i + i^2 + i^3 + . . . .\] upto 1000 terms.
The least positive integer n such that \[\left( \frac{2i}{1 + i} \right)^n\] is a positive integer, is.
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
If \[x + iy = \frac{3 + 5i}{7 - 6i},\] then y =
The amplitude of \[\frac{1 + i\sqrt{3}}{\sqrt{3} + i}\] is
The value of (i5 + i6 + i7 + i8 + i9) / (1 + i) is
\[\frac{1 + 2i + 3 i^2}{1 - 2i + 3 i^2}\] equals
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Show that `(-1 + sqrt(3)"i")^3` is a real number
Evaluate the following : i35
Evaluate the following : i93
Evaluate the following : i–888
Show that 1 + i10 + i20 + i30 is a real number
If z1 and z2 both satisfy `z + barz = 2|z - 1|` arg`(z_1 - z_2) = pi/4`, then find `"Im" (z_1 + z_2)`.
Show that `(-1+ sqrt(3)i)^3` is a real number.