Advertisements
Advertisements
प्रश्न
The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on
विकल्प
circle x2 + y2 = 1
the x−axis
the y−axis
the line x + y = 1
उत्तर
\[\left| \frac{i + z}{i - z} \right| = 1\]
\[ \Rightarrow \left| \frac{i + z}{i - z} \right|^2 = 1^2 \]
\[ \Rightarrow \left( \frac{i + z}{i - z} \right) \bar{\left( \frac{i + z}{i - z} \right)} = 1\]
\[ \Rightarrow \left( \frac{i + z}{i - z} \right)\left( \frac{- i + \bar{z}}{- i - \bar{z}} \right) = 1\]
\[ \Rightarrow \left( \frac{- i^2 - zi + \bar{z}i + z \bar{z}}{- i^2 + zi - \bar{z}i + z \bar{z}} \right) = 1\]
\[ \Rightarrow - i^2 - zi + \bar{z}i + z \bar{z} = - i^2 + zi - \bar{z}i + z \bar{z}\]
\[ \Rightarrow - zi + \bar{z}i = zi - \bar{z}i\]
\[ \Rightarrow \bar{z}i + \bar{z}i = zi + zi\]
\[ \Rightarrow 2 \bar{z}i = 2zi\]
\[ \Rightarrow \bar{z} = z\]
\[ \Rightarrow \text { z is purely real }\]
Hence, the correct option is (b).
APPEARS IN
संबंधित प्रश्न
Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)
Express the given complex number in the form a + ib: `(1/3 + 3i)^3`
Evaluate the following:
\[\left( i^{41} + \frac{1}{i^{257}} \right)^9\]
Evaluate the following:
\[i^{30} + i^{40} + i^{60}\]
Find the value of the following expression:
i + i2 + i3 + i4
Find the value of the following expression:
i5 + i10 + i15
Express the following complex number in the standard form a + i b:
\[\frac{(1 + i)(1 + \sqrt{3}i)}{1 - i}\] .
Find the real value of x and y, if
\[(1 + i)(x + iy) = 2 - 5i\]
If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.
Evaluate the following:
\[x^4 - 4 x^3 + 4 x^2 + 8x + 44,\text { when } x = 3 + 2i\]
If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].
Write the argument of −i.
If \[\left| z + 4 \right| \leq 3\], then find the greatest and least values of \[\left| z + 1 \right|\].
The value of \[(1 + i)(1 + i^2 )(1 + i^3 )(1 + i^4 )\] is.
\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to
If \[z = \left( \frac{1 + i}{1 - i} \right)\] then z4 equals
If \[z = \frac{1 + 2i}{1 - (1 - i )^2}\], then arg (z) equal
\[\text { If }z = 1 - \text { cos }\theta + i \text { sin }\theta, \text { then } \left| z \right| =\]
If \[z = \frac{1}{1 - cos\theta - i sin\theta}\] then Re (z) =
If \[z = \frac{1 + 7i}{(2 - i )^2}\] , then
The value of \[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1\] is
The value of \[(1 + i )^4 + (1 - i )^4\] is
A real value of x satisfies the equation \[\frac{3 - 4ix}{3 + 4ix} = a - ib (a, b \in \mathbb{R}), if a^2 + b^2 =\]
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i35
Evaluate the following : i403
Evaluate the following : i–888
If z1 = 3 – 2i and z2 = –1 + 3i, then Im(z1z2) = ______.
State true or false for the following:
If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
State True or False for the following:
The order relation is defined on the set of complex numbers.
If w is a complex cube-root of unity, then prove the following
(w2 + w − 1)3 = −8
Show that `(-1+ sqrt(3)i)^3` is a real number.