हिंदी

If X + I Y = a + I B a − I B Prove that X2 + Y2 = 1. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[x + iy = \frac{a + ib}{a - ib}\] prove that x2 + y2 = 1.

उत्तर

\[x + iy = \frac{a + ib}{a - ib}\]

\[\text { Taking mod on both the sides }: \]

\[\left| x + iy \right| = \left| \frac{a + ib}{a - ib} \right|\]

\[ \Rightarrow \sqrt{x^2 + y^2} = \frac{\sqrt{a^2 + b^2}}{\sqrt{a^2 + b^2}}\]

\[ \Rightarrow \sqrt{x^2 + y^2} = 1\]

\[ \Rightarrow x^2 + y^2 = 1\]

\[\text { Hence proved } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Complex Numbers - Exercise 13.2 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.2 | Q 8 | पृष्ठ ३२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`


Express the given complex number in the form a + ib: i–39


Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)


Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`


Evaluate: `[i^18 + (1/i)^25]^3`


If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b= `(x^2 + 1)^2/(2x + 1)^2`


Let z1 = 2 – i, z2 = –2 + i. Find `"Im"(1/(z_1barz_1))`


Find the value of the following expression:

i49 + i68 + i89 + i110


Find the value of the following expression:

i30 + i80 + i120


Find the value of the following expression:

\[\frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}}\]


Find the real value of x and y, if

\[(x + iy)(2 - 3i) = 4 + i\]


Find the real value of x and y, if

\[\frac{(1 + i)x - 2i}{3 + i} + \frac{(2 - 3i)y + i}{3 - i}\]


Find the real value of x and y, if

\[(1 + i)(x + iy) = 2 - 5i\]


If \[\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\] find (a, b).


If \[\left| z + 1 \right| = z + 2\left( 1 + i \right)\],find z.


What is the smallest positive integer n for which \[\left( 1 + i \right)^{2n} = \left( 1 - i \right)^{2n}\] ?


If z1 and z2 are two complex numbers such that \[\left| z_1 \right| = \left| z_2 \right|\] and arg(z1) + arg(z2) = \[\pi\] then show that \[z_1 = - \bar{{z_2}}\].


If n is any positive integer, write the value of \[\frac{i^{4n + 1} - i^{4n - 1}}{2}\].


Write −1 + \[\sqrt{3}\] in polar form .


If \[\frac{\left( a^2 + 1 \right)^2}{2a - i} = x + iy\] find the value of  \[x^2 + y^2\].


Write the value of \[\sqrt{- 25} \times \sqrt{- 9}\].


The polar form of (i25)3 is


If \[z = \frac{- 2}{1 + i\sqrt{3}}\],then the value of arg (z) is


\[(\sqrt{- 2})(\sqrt{- 3})\] is equal to


If \[z = a + ib\]  lies in third quadrant, then \[\frac{\bar{z}}{z}\] also lies in third quadrant if


The complex number z which satisfies the condition \[\left| \frac{i + z}{i - z} \right| = 1\] lies on


If z is a complex numberthen


If the complex number \[z = x + iy\] satisfies the condition \[\left| z + 1 \right| = 1\], then z lies on


Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`


Find a and b if (a + ib) (1 + i) = 2 + i


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

(1 + i)−3 


Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:

`(2 + sqrt(-3))/(4 + sqrt(-3))`


Show that 1 + i10 + i20 + i30 is a real number


State true or false for the following:

If a complex number coincides with its conjugate, then the number must lie on imaginary axis.


Show that `(-1 + sqrt3 "i")^3` is a real number.


Find the value of `(i^(592) + i^(590) + i^(588) + i^(586) + i^(584))/(i^(582) + i^(580) + i^(578) + i^(576) + i^(574))`


Show that `(-1+sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×